Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

Overview

HifiFace — Unofficial Pytorch Implementation

Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

issueBadge starBadge repoSize lastCommit

This repository is an unofficial implementation of the face swapping model proposed by Wang et. al in their paper HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping. This implementation makes use of the Pytorch Lighting library, a light-weight wrapper for PyTorch.

HifiFace Overview

The task of face swapping applies the face and the identity of the source person to the head of the target.

The HifiFace architecture can be broken up into three primary structures. The 3D shape-aware identity extractor, the semantic facial fusion module, and an encoder-decoder structure. A high-level overview of the architecture can be seen in the image below.

Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 2, pg. 3)

Changes from the original paper

Dataset

In the paper, the author used VGGFace2 and Asian-Celeb as the training dataset. Unfortunately, the Asian-Celeb dataset can only be accessed with a Baidu account, which we do not have. Thus, we only use VGGFace2 for our training dateset.

Model

The paper proposes two versions of HifiFace model based on the output image size: 256x256 and 512x512 (referred to as Ours-256 and Ours-512 in the paper). The 512x512 model uses an extra data preprocessing before training. In this open source project, we implement the 256x256 model. For the discriminator, the original paperuses the discriminator from StarGAN v2. Our implementation uses the multi-scale discriminator from SPADE.

Installation

Build Docker Image

git clone https://github.com/mindslab-ai/hififace 
cd hififace
git clone https://github.com/sicxu/Deep3DFaceRecon_pytorch && git clone https://github.com/NVlabs/nvdiffrast && git clone https://github.com/deepinsight/insightface.git
cp -r insightface/recognition/arcface_torch/ Deep3DFaceRecon_pytorch/models/
cp -r insightface/recognition/arcface_torch/ ./model/
rm -rf insightface
cp -rf 3DMM/* Deep3DFaceRecon_pytorch
mv Deep3DFaceRecon_pytorch model/
rm -rf 3DMM
docker build -t hififace:latent .
rm -rf nvdiffrast

This Dockerfile was inspired by @yuzhou164, this issue from Deep3DFaceRecon_pytorch.

Pre-Trained Model for Deep3DFace PyTorch

Follow the guideline in Prepare prerequisite models

Set up at ./mode/Deep3DFaceRecon_pytorch/

Pre-Trained Models for ArcFace

We used official Arcface per-trained pytorch implementation Download pre-trained checkpoint from onedrive (IResNet-100 trained on MS1MV3)

Download HifiFace Pre-Trained Model

google drive link trained on VGGFace2, 300K iterations

Training

Dataset & Preprocessing

Align & Crop

We aligned the face images with the landmark extracted by 3DDFA_V2. The code will be added.

Face Segmentation Map

After finishing aligning the face images, you need to get the face segmentation map for each face images. We used face segmentation model that PSFRGAN provides. You can use their code and pre-trained model.

Dataset Folder Structure

Each face image and the corresponding segmentation map should have the same name and the same relative path from the top-level directory.

face_image_dataset_folder
└───identity1
│   │   image1.png
│   │   image2.png
│   │   ...
│   
└───identity2
│   │   image1.png
│   │   image2.png
│   │   ...
│ 
|   ...

face_segmentation_mask_folder
└───identity1
│   │   image1.png
│   │   image2.png
│   │   ...
│   
└───identity2
│   │   image1.png
│   │   image2.png
│   │   ...
│ 
|   ...

Wandb

Wandb is a powerful tool to manage your model training. Please make a wandb account and a wandb project for training HifiFace with our training code.

Changing the Configuration

  • config/model.yaml

    • dataset.train.params.image_root: directory path to the training dataset images
    • dataset.train.params.parsing_root: directory path to the training dataset parsing images
    • dataset.validation.params.image_root: directory path to the validation dataset images
    • dataset.validation.params.parsing_root: directory path to the validation dataset parsing images
  • config/trainer.yaml

    • checkpoint.save_dir: directory where the checkpoints will be saved
    • wandb: fill out your wandb entity and project name

Run Docker Container

docker run -it --ipc host --gpus all -v /PATH_TO/hififace:/workspace -v /PATH_TO/DATASET/FOLDER:/DATA --name hififace hififace:latent

Run Training Code

python hififace_trainer.py --model_config config/model.yaml --train_config config/trainer.yaml -n hififace

Inference

Single Image

python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result.png

All Posible Pairs of Images in Directory

python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt  --input_directory_path asset/inference_sample --output_image_path ./result.png

Interpolation

# interpolates both the identity and the 3D shape.
python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result_all.gif  --interpolation_all 

# interpolates only the identity.
python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result_identity.gif  --interpolation_identity

# interpolates only the 3D shape.
python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result_3d.gif  --interpolation_3d

Our Results

The results from our pre-trained model.

GIF interpolaiton results from Obama to Trump to Biden back to Obama. The left image interpolates both the identity and the 3D shape. The middle image interpolates only the identity. The right image interpolates only the 3D shape.

To-Do List

  • Pre-processing Code
  • Colab Notebook

License

BSD 3-Clause License.

Implementation Author

Changho Choi @ MINDs Lab, Inc. ([email protected])

Matthew B. Webster @ MINDs Lab, Inc. ([email protected])

Citations

@article{DBLP:journals/corr/abs-2106-09965,
  author    = {Yuhan Wang and
               Xu Chen and
               Junwei Zhu and
               Wenqing Chu and
               Ying Tai and
               Chengjie Wang and
               Jilin Li and
               Yongjian Wu and
               Feiyue Huang and
               Rongrong Ji},
  title     = {HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping},
  journal   = {CoRR},
  volume    = {abs/2106.09965},
  year      = {2021}
}
Owner
MINDs Lab
MINDsLab provides AI platform and various AI engines based on deep machine learning.
MINDs Lab
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022