Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

Overview

DAL

This project hosts the official implementation for our AAAI 2021 paper:

Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [comments].

Abstract

In this paper, we propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree to comprehensively evaluate the localization potential of the anchors and carry out a more efficient label assignment process. In this way, the detector can dynamically select high-quality anchors to achieve accurate object detection, and the divergence between classification and regression will be alleviated.

Getting Started

The codes build Rotated RetinaNet with the proposed DAL method for rotation object detection. The supported datasets include: DOTA, HRSC2016, ICDAR2013, ICDAR2015, UCAS-AOD, NWPU VHR-10, VOC.

Installation

Insatll requirements:

pip install -r requirements.txt
pip install git+git://github.com/lehduong/torch-warmup-lr.git

Build the Cython and CUDA modules:

cd $ROOT/utils
sh make.sh
cd $ROOT/utils/overlaps_cuda
python setup.py build_ext --inplace

Installation for DOTA_devkit:

cd $ROOT/datasets/DOTA_devkit
sudo apt-get install swig
swig -c++ -python polyiou.i
python setup.py build_ext --inplace

Inference

You can use the following command to test a dataset. Note that weight, img_dir, dataset,hyp should be modified as appropriate.

python demo.py

Train

  1. Move the dataset to the $ROOT directory.
  2. Generate imageset files for daatset division via:
cd $ROOT/datasets
python generate_imageset.py
  1. Modify the configuration file hyp.py and arguments in train.py, then start training:
python train.py

Evaluation

Different datasets use different test methods. For UCAS-AOD/HRSC2016/VOC/NWPU VHR-10, you need to prepare labels in the appropriate format in advance. Take evaluation on HRSC2016 for example:

cd $ROOT/datasets/evaluate
python hrsc2gt.py

then you can conduct evaluation:

python eval.py

Note that :

  • the script needs to be executed only once, but testing on different datasets needs to be executed again.
  • the imageset file used in hrsc2gt.py is generated from generate_imageset.py.

Main Results

Method Dataset Bbox Backbone Input Size mAP/F1
DAL DOTA OBB ResNet-101 800 x 800 71.78
DAL UCAS-AOD OBB ResNet-101 800 x 800 89.87
DAL HRSC2016 OBB ResNet-50 416 x 416 88.60
DAL ICDAR2015 OBB ResNet-101 800 x 800 82.4
DAL ICDAR2013 HBB ResNet-101 800 x 800 81.3
DAL NWPU VHR-10 HBB ResNet-101 800 x 800 88.3
DAL VOC 2007 HBB ResNet-101 800 x 800 76.1

Detections

DOTA_results

Citation

If you find our work or code useful in your research, please consider citing:

@article{ming2020dynamic,
  title={Dynamic Anchor Learning for Arbitrary-Oriented Object Detection},
  author={Ming, Qi and Zhou, Zhiqiang and Miao, Lingjuan and Zhang, Hongwei and Li, Linhao},
  journal={arXiv preprint arXiv:2012.04150},
  year={2020}
}

If you have any questions, please contact me via issue or email.

Owner
ming71
欢迎学术交流合作[email protected]
ming71
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022