Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Overview

Learning to Communicate with Deep Multi-Agent Reinforcement Learning

This is a PyTorch implementation of the original Lua code release.

Overview

This codebase implements two approaches to learning discrete communication protocols for playing collaborative games: Reinforced Inter-Agent Learning (RIAL), in which agents learn a factorized deep Q-learning policy across game actions and messages, and Differentiable Inter-Agent Learning (DIAL), in which the message vectors are directly learned by backpropagating errors through a noisy communication channel during training, and discretized to binary vectors during test time. While RIAL and DIAL share the same individual network architecture, one would expect learning to be more efficient under DIAL, which directly backpropagates downstream errors during training, a fact that is verified in comparing the performance of the two approaches.

Execution

$ virtualenv .venv
$ source .venv/bin/activate
$ pip install -r requirements.txt
$ python main.py -c config/switch_3_dial.json

Results for switch game

DIAL vs. RIAL reward curves

This chart was generated by plotting an exponentially-weighted average across 20 trials for each curve.

More info

More generally, main.py takes multiple arguments:

Arg Short Description Required?
--config_path -c path to JSON configuration file
--results_path -r path to directory in which to save results per trial (as csv) -
--ntrials -n number of trials to run -
--start_index -s start-index used as suffix in result filenames -
--verbose -v prints results per training epoch to stdout if set -
Configuration

JSON configuration files passed to main.py should consist of the following key-value pairs:

Key Description Type
game name of the game, e.g. "switch" string
game_nagents number of agents int
game_action_space number of valid game actions int
game_comm_limited true if only some agents can communicate at each step bool
game_comm_bits number of bits per message int
game_comm_sigma standard deviation of Gaussian noise applied by DRU float
game_comm_hard true if use hard discretization, soft approximation otherwise bool
nsteps maximum number of game steps int
gamma reward discount factor for Q-learning float
model_dial true if agents should use DIAL bool
model_comm_narrow true if DRU should use sigmoid for regularization, softmax otherwise bool
model_target true if learning should use a target Q-network bool
model_bn true if learning should use batch normalization bool
model_know_share true if agents should share parameters bool
model_action_aware true if each agent should know their last action bool
model_rnn_size dimension of rnn hidden state int
bs batch size of episodes, run in parallel per epoch int
learningrate learning rate for optimizer (RMSProp) float
momentum momentum for optimizer (RMSProp) float
eps exploration rate for epsilon-greedy exploration float
nepisodes number of epochs, each consisting of parallel episodes int
step_test perform a test episode every this many steps int
step_target update target network every this many steps int
Visualizing results

You can use analyze_results.py to graph results output by main.py. This script will plot the average results across all csv files per path specified after -r. Further, -a can take an alpha value to plot results as exponentially-weighted moving averages, and -l takes an optional list of labels corresponding to the paths.

$ python util/analyze_results -r <paths to results> -a <weight for EWMA>

Bibtex

@inproceedings{foerster2016learning,
    title={Learning to communicate with deep multi-agent reinforcement learning},
    author={Foerster, Jakob and Assael, Yannis M and de Freitas, Nando and Whiteson, Shimon},
    booktitle={Advances in Neural Information Processing Systems},
    pages={2137--2145},
    year={2016} 
}

License

Code licensed under the Apache License v2.0

Owner
Minqi
Minqi
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022