Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

Related tags

Deep Learningssai
Overview

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newer version: https://github.com/mitmul/ssai-cnn

Semantic Segmentation for Aerial Imagery

Extract building and road from aerial imagery

Requirements

Data preparation

$ bash shells/donwload.sh
$ python scripts/create_dataset.py --dataset multi
$ python scripts/create_dataset.py --dataset single
$ python scripts/create_dataset.py --dataset roads_mini
$ python scripts/create_dataset.py --dataset roads
$ python scripts/create_dataset.py --dataset buildings
$ python scripts/create_dataset.py --dataset merged

Massatusetts Building & Road dataset

  • mass_roads

    • train: 8458173 patches

      • epoch: 66079 mini-batches (mini-batch size: 128)
    • valid: 126281 patches

      • epoch: 987 mini-batches (mini-batch size: 128)
    • test: 440932 patches

      • epoch: 3445 mini-batches (mini-batch size: 128)
  • mass_roads_mini, mass_buildings, mass_merged

    • train: 1119872 patches

      • epoch: 8749 mini-batches (mini-batch size: 128)
    • valid: 36100 patches

      • epoch: 282 mini-batches (mini-batch size: 128)
    • test: 89968 patches

      • epoch: 703 mini-batches (mini-batch size: 128)

Create Models

$ python scripts/create_models.py --seed seeds/model_seeds.json --caffe_dir $HOME/lib/caffe/build/install

Start training

$ bash shells/train.sh models/Mnih_CNN

will create a directory named results/Mnih_CNN_{started date}.

Prediction

$ cd results/Mnih_CNN_{started date}
$ python ../../scripts/test_prediction.py --model predict.prototxt --weight snapshots/Mnih_CNN_iter_1000000.caffemodel --img_dir ../../data/mass_merged/test/sat --channel 3

Build Library for Evaluation

$ cd lib
$ mkdir build
$ cd build
$ cmake ../
$ make

Evaluation

$ cd results/Mnih_CNN_{started date}
$ python ../../scripts/test_evaluation.py --map_dir ../../data/mass_merged/test/map --result_dir prediction_1000000 --channel 3

Model averaging

$ python ../scripts/batch_evaluation.py --offset True
$ mkdir Mnih_CNN_Merged
$ cd Mnih_CNN_Merged
$ python ../../scripts/test_evaluation.py --map_dir ../../data/mass_merged/test/map --result_dir ./prediction_100000 --channel 3 --offset 0 --pad 31
Owner
Shunta Saito
Ph.D in Engineering, Researcher at Preferred Networks, Inc.
Shunta Saito
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023