Python Elasticsearch handler for the standard python logging framework

Overview

Python Elasticsearch Log handler

This library provides an Elasticsearch logging appender compatible with the python standard logging library.

This library is a fork of https://github.com/cmanaha/python-elasticsearch-logger Thanks to Carlos Manzanedo Rueda for starting this library.

The code source is in github at https://github.com/mkhadher/python-elasticsearch-logger

Installation

Install using pip

pip install PYESHandler

Requirements Python 2

This library requires the following dependencies
  • elasticsearch
  • requests
  • enum

Requirements Python 3

This library requires the following dependencies
  • elasticsearch
  • requests

Additional requirements for Kerberos support

Additionally, the package support optionally kerberos authentication by adding the following dependecy
  • requests-kerberos

Additional requirements for AWS IAM user authentication (request signing)

Additionally, the package support optionally AWS IAM user authentication by adding the following dependecy
  • requests-aws4auth

Using the handler in your program

To initialise and create the handler, just add the handler to your logger as follow

from pyeslogging.handlers import PYESHandler
handler = PYESHandler(hosts=[{'host': 'localhost', 'port': 9200}],
                           auth_type=PYESHandler.AuthType.NO_AUTH,
                           es_index_name="my_python_index")
log = logging.getLogger("PythonTest")
log.setLevel(logging.INFO)
log.addHandler(handler)

You can add fields upon initialisation, providing more data of the execution context

from pyeslogging.handlers import PYESHandler
handler = PYESHandler(hosts=[{'host': 'localhost', 'port': 9200}],
                           auth_type=PYESHandler.AuthType.NO_AUTH,
                           es_index_name="my_python_index",
                           es_additional_fields={'App': 'MyAppName', 'Environment': 'Dev'})
log = logging.getLogger("PythonTest")
log.setLevel(logging.INFO)
log.addHandler(handler)

This additional fields will be applied to all logging fields and recorded in elasticsearch

To log, use the regular commands from the logging library

log.info("This is an info statement that will be logged into elasticsearch")

Your code can also dump additional extra fields on a per log basis that can be used to instrument operations. For example, when reading information from a database you could do something like:

start_time = time.time()
database_operation()
db_delta = time.time() - start_time
log.debug("DB operation took %.3f seconds" % db_delta, extra={'db_execution_time': db_delta})

The code above executes the DB operation, measures the time it took and logs an entry that contains in the message the time the operation took as string and for convenience, it creates another field called db_execution_time with a float that can be used to plot the time this operations are taking using Kibana on top of elasticsearch

Initialisation parameters

The constructors takes the following parameters:
  • hosts: The list of hosts that elasticsearch clients will connect, multiple hosts are allowed, for example

    [{'host':'host1','port':9200}, {'host':'host2','port':9200}]
    
  • auth_type: The authentication currently support PYESHandler.AuthType = NO_AUTH, BASIC_AUTH, KERBEROS_AUTH

  • auth_details: When PYESHandler.AuthType.BASIC_AUTH or "BASIC_AUTH" string is used this argument must contain a tuple of string with the user and password that will be used to authenticate against the Elasticsearch servers, for example a tuple ('User','Password') or a dictionary {"username": "my_username","password": "my_fancy_password"}

  • aws_secret_key: When PYESHandler.AuthType.AWS_SIGNED_AUTH or "AWS_SIGNED_AUTH" string is used this argument must contain the AWS secret key of the the AWS IAM user

  • aws_region: When PYESHandler.AuthType.AWS_SIGNED_AUTH or "AWS_SIGNED_AUTH" string is used this argument must contain the AWS region of the the AWS Elasticsearch servers, for example 'us-east'

  • use_ssl: A boolean that defines if the communications should use SSL encrypted communication

  • verify_ssl: A boolean that defines if the SSL certificates are validated or not

  • buffer_size: An int, Once this size is reached on the internal buffer results are flushed into ES

  • flush_frequency_in_sec: A float representing how often and when the buffer will be flushed

  • es_index_name: A string with the prefix of the elasticsearch index that will be created. Note a date with YYYY.MM.dd, python_logger used by default

  • index_name_frequency: The frequency to use as part of the index naming. Currently supports ElasticECSHandler.IndexNameFrequency.DAILY, ElasticECSHandler.IndexNameFrequency.WEEKLY, ElasticECSHandler.IndexNameFrequency.MONTHLY, ElasticECSHandler.IndexNameFrequency.YEARLY and ElasticECSHandler.IndexNameFrequency.NEVER. By default the daily rotation is used. is used

  • es_doc_type: A string with the name of the document type that will be used python_log used by default

  • es_additional_fields: A dictionary with all the additional fields that you would like to add to the logs

Django Integration

It is also very easy to integrate the handler to Django And what is even better, at DEBUG level django logs information such as how long it takes for DB connections to return so they can be plotted on Kibana, or the SQL statements that Django executed.

from pyeslogging.handlers import PYESHandler
LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'handlers': {
        'file': {
            'level': 'DEBUG',
            'class': 'logging.handlers.RotatingFileHandler',
            'filename': './debug.log',
            'maxBytes': 102400,
            'backupCount': 5,
        },
        'elasticsearch': {
            'level': 'DEBUG',
            'class': 'pyeslogging.handlers.PYESHandler',
            'hosts': [{'host': 'localhost', 'port': 9200}],
            'es_index_name': 'my_python_app',
            'es_additional_fields': {'App': 'Test', 'Environment': 'Dev'},
            'auth_type': PYESHandler.AuthType.NO_AUTH,
            'use_ssl': False,
        },
    },
    'loggers': {
        'django': {
            'handlers': ['file','elasticsearch'],
            'level': 'DEBUG',
            'propagate': True,
        },
    },
}

There is more information about how Django logging works in the Django documentation

Read logging JSON Config File

The below example can be used by a flask app or any python script. This example shows how to configure logging logger for file and elasticsearch logging using logging json config file.

logging.json

{
   "version":1,
   "disable_existing_loggers":true,
   "formatters":{
      "standard":{
         "format":"%(asctime)s - %(levelname)s - %(threadName)s - %(name)s - %(message)s"
      }
   },
   "handlers":{
      "file":{
         "level":"DEBUG",
         "class":"logging.handlers.TimedRotatingFileHandler",
         "formatter":"standard",
         "filename":"./log_file.txt",
         "when":"midnight",
         "backupCount":25
      },
      "elasticsearch":{
         "level":"DEBUG",
         "class":"pyeslogging.handlers.PYESHandler",
         "hosts": [{"host": "my.elastic.domain.com", "port": 9243}],
         "es_index_name":"PYESLogger",
         "auth_type": "BASIC_AUTH",
         "auth_details": {"username": "my_username","password": "my_fancy_password"},
         "use_ssl":true,
         "index_name_frequency": "monthly",
         "verify_ssl": true
      }
   },
   "root":{
      "handlers":[
         "file",
         "elasticsearch"
      ],
      "level":"DEBUG",
      "propagate":false
   }
}

app.py

import logging
import logging.config
from pyeslogging.handlers import PYESHandler
import json

# Define logging.json path
with open("C:\App\logging.json") as read_file:
    loggingConfigDir = json.load(read_file)
logging.config.dictConfig(loggingConfigDir)
logger = logging.getLogger('root')
logger.info("Hello World !")

Building the sources & Testing

To create the package follow the standard python setup.py to compile. To test, just execute the python tests within the test folder

Why using an appender rather than logstash or beats

In some cases is quite useful to provide all the information available within the LogRecords as it contains things such as exception information, the method, file, log line where the log was generated.

The same functionality can be implemented in many other different ways. For example, consider the integration using SysLogHandler and logstash syslog plugin.

Contributing back

Feel free to use this as is or even better, feel free to fork and send your pull requests over.

Owner
Mohammed Mousa
Mohammed Mousa
Pythonic search engine based on PyLucene.

Lupyne is a search engine based on PyLucene, the Python extension for accessing Java Lucene. Lucene is a relatively low-level toolkit, and PyLucene wr

A. Coady 83 Jan 02, 2023
A search engine to query social media insights with political theme

social-insights Social insights is an open source big data project that generates insights about various interesting topics happening every day. Curre

UMass GDSC 10 Feb 28, 2022
Google Search Engine Results Pages (SERP) in locally, no API key, no signup required

Local SERP Google Search Engine Results Pages (SERP) in locally, no API key, no signup required Make sure the chromedriver and required package are in

theblackcat102 4 Jun 29, 2021
A play store search application programming interface ( API )

Play-Store-API A play store search application programming interface ( API ) Made with Python3

Fayas Noushad 8 Oct 21, 2022
A sphinx extension for designing beautiful, screen-size responsive web components.

sphinx-design A sphinx extension for designing beautiful, view size responsive web components. Created with inspiration from Bootstrap (v5), Material

Executable Books 109 Jan 01, 2023
This is a Telegram Bot written in Python for searching data on Google Drive.

This is a Telegram Bot written in Python for searching data on Google Drive. Supports multiple Shared Drives (TDs). Manual Guide for deploying the bot

Levi 158 Dec 27, 2022
🔍 Messages Searcher is make for search custom message in all channels in guild and dm.

🔍 Messages Searcher is make for search custom message in all channels in guild and dm.

Kaneki 33 Dec 31, 2022
Full text search for flask.

flask-msearch Installation To install flask-msearch: pip install flask-msearch # when MSEARCH_BACKEND = "whoosh" pip install whoosh blinker # when MSE

honmaple 197 Dec 29, 2022
Home for Elasticsearch examples available to everyone. It's a great way to get started.

Introduction This is a collection of examples to help you get familiar with the Elastic Stack. Each example folder includes a README with detailed ins

elastic 2.5k Jan 03, 2023
Super Simple Similarities Service

Super Simple Similarities Service

vincent d warmerdam 95 Dec 25, 2022
A library for fast import of Windows NT Registry(REGF) into Elasticsearch.

A library for fast import of Windows NT Registry(REGF) into Elasticsearch.

S.Nakano 3 Apr 01, 2022
Pysolr — Python Solr client

pysolr pysolr is a lightweight Python client for Apache Solr. It provides an interface that queries the server and returns results based on the query.

Haystack Search 626 Dec 01, 2022
基于RSSHUB阅读器实现的获取P站排行和P站搜图,使用时需使用代理

基于RSSHUB阅读器实现的获取P站排行和P站搜图

34 Dec 05, 2022
Free and Open, Distributed, RESTful Search Engine

Elasticsearch Elasticsearch is the distributed, RESTful search and analytics engine at the heart of the Elastic Stack. You can use Elasticsearch to st

elastic 62.4k Jan 08, 2023
a Telegram bot writen in Python for searching files in Drive. Based on SearchX-bot

Drive Search Bot This is a Telegram bot writen in Python for searching files in Drive. Based on SearchX-bot How to deploy? Clone this repo: git clone

Hafitz Setya 25 Dec 09, 2022
solrpy is a Python client for Solr

solrpy solrpy is a Python client for Solr, an enterprise search server built on top of Lucene. solrpy allows you to add documents to a Solr instance,

Jiho Persy Lee 37 Jul 22, 2021
PwnWiki 数据库搜索命令行工具;该工具有点像 searchsploit 命令,只是搜索的不是 Exploit Database 而是 PwnWiki 条目

PWSearch PwnWiki 数据库搜索命令行工具。该工具有点像 searchsploit 命令,只是搜索的不是 Exploit Database 而是 PwnWiki 条目。

K4YT3X 72 Dec 20, 2022
Modular search for Django

Haystack Author: Daniel Lindsley Date: 2013/07/28 Haystack provides modular search for Django. It features a unified, familiar API that allows you to

Haystack Search 3.4k Jan 04, 2023
Python script for finding duplicate images within a folder.

Python script for finding duplicate images within a folder.

194 Dec 31, 2022
document organizer with tags and full-text-search, in a simple and clean sqlite3 schema

document organizer with tags and full-text-search, in a simple and clean sqlite3 schema

Manos Pitsidianakis 152 Oct 29, 2022