Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

Overview

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021]

Open In Colab report report

SPEC: Seeing People in the Wild with an Estimated Camera,
Muhammed Kocabas, Chun-Hao Paul Huang, Joachim Tesch, Lea Müller, Otmar Hilliges, Michael J. Black,
International Conference on Computer Vision (ICCV), 2021

Features

SPEC is a camera-aware human body pose and shape estimation method. It both predicts the camera parameters and SMPL body model for a given image. CamCalib predicts the camera parameters. SPEC uses these parameters to predict SMPL body model parameters.

This implementation:

  • has the demo code for SPEC and CamCalib implemented in PyTorch.
  • achieves SOTA results in SPEC-SYN and SPEC-MTP datasets.
  • shows how to perform evaluation on SPEC-SYN and SPEC-MTP datasets.

Updates

  • 13/10/2021: Demo and evaluation code is released.

Getting Started

SPEC has been implemented and tested on Ubuntu 18.04 with python >= 3.7. If you don't have a suitable device, try running our Colab demo.

Clone the repo:

git clone https://github.com/mkocabas/SPEC.git

Install the requirements using virtualenv or conda:

# pip
source scripts/install_pip.sh

# conda
source scripts/install_conda.sh

Running the Demo

SPEC

First, you need to download the required data (i.e our trained model and SMPL model parameters). It is approximately 1GB. To do this you can just run:

source scripts/prepare_data.sh

Then, running the demo is as simple as:

python scripts/spec_demo.py \
  --image_folder data/sample_images \
  --output_folder logs/spec/sample_images

Sample demo output:

Here the green line is the horizon obtained using estimated camera parameters. On the right, the ground plane is visualized to show how accurate the global translation is.

CamCalib

If you are only interested in estimating the camera parameters of an image, run the CamCalib demo:

python scripts/camcalib_demo.py \
  --img_folder <input image folder> \
  --out_folder <output folder> \
  --show # visualize the raw network predictions

This script outputs a pickle file which contains the predicted camera parameters for each input image along with an output image which visualizes the camera parameters as a horizon line. Pickle file contains:

'vfov' : vertical field of view in radians
'f_pix': focal length in pixels
'pitch': pitch in radians
'roll' : roll in radians

Google Colab

Training

Training instructions will follow soon.

Datasets

Pano360, SPEC-MTP, and SPEC-SYN are new datasets introduced in our paper. You can download them from the Downloads section of our project page.

For Pano360 dataset, we have released the Flickr image ids which can be used to download images using FlickrAPI. We have provided a download script in this repo. Some of the images will be missing due to users deleting their photos. In this case, you can also use scrape_and_download function provided in the script to find and download more photos.

After downloading the SPEC-SYN, SPEC-MTP, Pano360, and 3DPW datasets, the data folder should look like:

data/
├── body_models
│   └── smpl
├── camcalib
│   └── checkpoints
├── dataset_extras
├── dataset_folders
│   ├── 3dpw
│   ├── pano360
│   ├── spec-mtp
│   └── spec-syn
├── sample_images
└── spec
    └── checkpoints

Evaluation

You can evaluate SPEC on SPEC-SYN, SPEC-MTP, and 3DPW datasets by running:

python scripts/spec_eval.py \
  --cfg data/spec/checkpoints/spec_config.yaml \
  --opts DATASET.VAL_DS spec-syn_spec-mtp_3dpw-test-cam

Running this script should give results reported in this table:

W-MPJPE PA-MPJPE W-PVE
SPEC-MTP 124.3 71.8 147.1
SPEC-SYN 74.9 54.5 90.5
3DPW 106.7 53.3 124.7

Citation

@inproceedings{SPEC:ICCV:2021,
  title = {{SPEC}: Seeing People in the Wild with an Estimated Camera},
  author = {Kocabas, Muhammed and Huang, Chun-Hao P. and Tesch, Joachim and M\"uller, Lea and Hilliges, Otmar and Black, Michael J.},
  booktitle = {Proc. International Conference on Computer Vision (ICCV)},
  pages = {11035--11045},
  month = oct,
  year = {2021},
  doi = {},
  month_numeric = {10}
}

License

This code is available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using this code you agree to the terms in the LICENSE. Third-party datasets and software are subject to their respective licenses.

References

We indicate if a function or script is borrowed externally inside each file. Here are some great resources we benefit:

Consider citing these works if you use them in your project.

Contact

For questions, please contact [email protected]

For commercial licensing (and all related questions for business applications), please contact [email protected].

Comments
  • Translation of the camera

    Translation of the camera

    I'd like to know if it's possible to get a translation of the camera. I've found the code just for rotation and focal length estimation.

    On this image https://github.com/mkocabas/SPEC/blob/master/docs/assets/spec_gif.gif the camera is placed in the world space somehow. How did you do this? Thanks.

    opened by Dene33 4
  • Segmentation fault (core dumped)

    Segmentation fault (core dumped)

    Hi~ When I run the command python scripts/spec_demo.py --batch_size 1 --image_folder data/sample_images --output_folder logs/spec/sample_images, I got the error as this: Segmentation fault (core dumped) I have no idea about it, could you help me, please?

    opened by JinkaiZheng 2
  • There is no flickr_photo_ids.npy

    There is no flickr_photo_ids.npy

    Hello author:

    After unzipping the spec-github-data.zip, there is no data/dataset_folders/pano360/flickr_photo_ids.npy. I don't know whether I find the right place, could you help me?

    Best regards.

    opened by songxujay 1
  • video demo

    video demo

    It's a great job. Is the video demo not available now? `def main(args):

    demo_mode = args.mode
    
    if demo_mode == 'video':
        raise NotImplementedError
    elif demo_mode == 'webcam':
        raise NotImplementedError`
    
    opened by FatherPrime 1
  • Fix PARE requirement in requirement.txt

    Fix PARE requirement in requirement.txt

    Thanks for sharing this work! Please fix the requirement in requirement.txt file of PARE. It should be (currently missing "git+" prefix): git+https://github.com/mkocabas/PARE.git

    opened by Omri-CG 1
  • get error horizon line by camcalib_demo.py

    get error horizon line by camcalib_demo.py

    all example_image seem get error result by camcalib_demo.py, look like this: COCO_val2014_000000326555 it seems the predicted horizon line shift by model,how should I solve this problem?

    opened by hhhlllyyy 0
  • feet fit accuracy

    feet fit accuracy

    I've encountered frequent problems that SPEC is having to fit the model to feet correctly:

    image image

    Is this the same problem as mentioned in the VIBE discussion: https://github.com/mkocabas/VIBE/issues/24#issuecomment-596714558 ? Have you tried to include the OpenPose feet keypoint predictions to the loss?

    Thanks for the great work!

    opened by smidm 0
  • Dataset npz interpretation

    Dataset npz interpretation

    Dear Muhammed,

    Thank you for this work and the datasets! I'm trying to interpret the data in the SPEC-SYN npz data files, but I'm not sure what each key means. Is there documentation? They are the following: ['imgname', 'center', 'scale', 'pose', 'shape', 'part', 'mmpose_keypoints', 'openpose', 'openpose_gt', 'S', 'focal_length', 'cam_rotmat', 'cam_trans', 'cam_center', 'cam_pitch', 'cam_roll', 'cam_hfov', 'cam_int', 'camcalib_pitch', 'camcalib_roll', 'camcalib_vfov', 'camcalib_f_pix']

    At this point, I'd just like to plot the 24 SMPL joints on the image. Based on the array shape, I assume 'S' contains the joints. Is cam_rotmat the rotation from world space to camera space? Is the cam_trans the position of the camera or the top right part of the extrinsic matrix? I assume for this plotting exercise I can ignore everything except S, cam_rotmat, cam_trans and cam_int. Still for some reason the points end up at at very wrong places. Maybe 'S' is something else? Or am I using the camera params wrong?

    Thanks! Istvan

    opened by isarandi 5
  • Colab notebook inaccesible

    Colab notebook inaccesible

    Hi,I tried accesing the colab notebook but wasn't able to access it.Would you be able to kindly suggest another way to run inference as I am currently working on a windows based CPU system.

    opened by sparshgarg23 0
  • Error during single dataset evaluation

    Error during single dataset evaluation

    I tried running the evaluation only for the 3DPW dataset with the following command:

    python scripts/spec_eval.py --cfg data/spec/checkpoints/spec_config.yaml --opts DATASET.VAL_DS 3dpw-test-cam 
    

    But it gives the following error:

    TypeError: test_step() missing 1 required positional argument: 'dataloader_nb'
    

    Fixed it by giving a default value for dataloader_nb for the test_step function in trainer.py:

    def test_step(self, batch, batch_nb, dataloader_nb=0):
        return self.validation_step(batch, batch_nb, dataloader_nb)
    

    The error occurs because we don't append dataloader_idx to args in evaluation_loop.py:

    if multiple_test_loaders or multiple_val_loaders:
        args.append(dataloader_idx)
    
    opened by umariqb 1
Owner
Muhammed Kocabas
Muhammed Kocabas
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022