Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Overview

Neural Circuit Policies Enabling Auditable Autonomy

DOI

Online access via SharedIt

Neural Circuit Policies (NCPs) are designed sparse recurrent neural networks based on the LTC neuron and synapse model loosely inspired by the nervous system of the organism C. elegans. This page is a description of the Keras (TensorFlow 2 package) reference implementation of NCPs. For reproducibility materials of the paper see the corresponding subpage.

alt

Installation

Requirements:

  • Python 3.6
  • TensorFlow 2.4
  • (Optional) PyTorch 1.7
pip install keras-ncp

Update January 2021: Experimental PyTorch support added

With keras-ncp version 2.0 experimental PyTorch support is added. There is an example on how to use the PyTorch binding in the examples folder and a Colab notebook linked below. Note that the support is currently experimental, which means that it currently misses some functionality (e.g., no plotting, no irregularly sampled time-series,etc. ) and might be subject to breaking API changes in future updates.

Breaking API changes between 1.x and 2.x

The TensorFlow bindings have been moved to the tf submodule. Thus the only breaking change regarding the TensorFlow/Keras bindings concern the import

# Import shared modules for wirings, datasets,...
import kerasncp as kncp
# Import framework-specific binding
from kerasncp.tf import LTCCell      # Use TensorFlow binding
(from kerasncp.torch import LTCCell  # Use PyTorch binding)

Colab notebooks

We have created a few Google Colab notebooks for an interactive introduction to the package

Usage: the basics

The package is composed of two main parts:

  • The LTC model as a tf.keras.layers.Layer or torch.nn.Module RNN cell
  • An wiring architecture for the LTC cell above

The wiring could be fully-connected (all-to-all) or sparsely designed using the NCP principles introduced in the paper. As the LTC model is expressed in the form of a system of ordinary differential equations in time, any instance of it is inherently a recurrent neural network (RNN).

Let's create a LTC network consisting of 8 fully-connected neurons that receive a time-series of 2 input features as input. Moreover, we define that 1 of the 8 neurons acts as the output (=motor neuron):

from tensorflow import keras
import kerasncp as kncp
from kerasncp.tf import LTCCell

wiring = kncp.wirings.FullyConnected(8, 1)  # 8 units, 1 motor neuron
ltc_cell = LTCCell(wiring) # Create LTC model

model = keras.Sequential(
    [
        keras.layers.InputLayer(input_shape=(None, 2)), # 2 input features
        keras.layers.RNN(ltc_cell, return_sequences=True),
    ]
)
model.compile(
    optimizer=keras.optimizers.Adam(0.01), loss='mean_squared_error'
)

We can then fit this model to a generated sine wave, as outlined in the tutorials (open in Google Colab).

alt

More complex architectures

We can also create some more complex NCP wiring architecture. Simply put, an NCP is a 4-layer design vaguely inspired by the wiring of the C. elegans worm. The four layers are sensory, inter, command, and motor layer, which are sparsely connected in a feed-forward fashion. On top of that, the command layer realizes some recurrent connections. As their names already indicate, the sensory represents the input and the motor layer the output of the network.

We can also customize some of the parameter initialization ranges, although the default values should work fine for most cases.

ncp_wiring = kncp.wirings.NCP(
    inter_neurons=20,  # Number of inter neurons
    command_neurons=10,  # Number of command neurons
    motor_neurons=5,  # Number of motor neurons
    sensory_fanout=4,  # How many outgoing synapses has each sensory neuron
    inter_fanout=5,  # How many outgoing synapses has each inter neuron
    recurrent_command_synapses=6,  # Now many recurrent synapses are in the
    # command neuron layer
    motor_fanin=4,  # How many incoming synapses has each motor neuron
)
ncp_cell = LTCCell(
    ncp_wiring,
    initialization_ranges={
        # Overwrite some of the initialization ranges
        "w": (0.2, 2.0),
    },
)

We can then combine the NCP cell with arbitrary keras.layers, for instance to build a powerful image sequence classifier:

height, width, channels = (78, 200, 3)

model = keras.models.Sequential(
    [
        keras.layers.InputLayer(input_shape=(None, height, width, channels)),
        keras.layers.TimeDistributed(
            keras.layers.Conv2D(32, (5, 5), activation="relu")
        ),
        keras.layers.TimeDistributed(keras.layers.MaxPool2D()),
        keras.layers.TimeDistributed(
            keras.layers.Conv2D(64, (5, 5), activation="relu")
        ),
        keras.layers.TimeDistributed(keras.layers.MaxPool2D()),
        keras.layers.TimeDistributed(keras.layers.Flatten()),
        keras.layers.TimeDistributed(keras.layers.Dense(32, activation="relu")),
        keras.layers.RNN(ncp_cell, return_sequences=True),
        keras.layers.TimeDistributed(keras.layers.Activation("softmax")),
    ]
)
model.compile(
    optimizer=keras.optimizers.Adam(0.01),
    loss='sparse_categorical_crossentropy',
)
@article{lechner2020neural,
  title={Neural circuit policies enabling auditable autonomy},
  author={Lechner, Mathias and Hasani, Ramin and Amini, Alexander and Henzinger, Thomas A and Rus, Daniela and Grosu, Radu},
  journal={Nature Machine Intelligence},
  volume={2},
  number={10},
  pages={642--652},
  year={2020},
  publisher={Nature Publishing Group}
}
You might also like...
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

Code for our paper
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Open Source Neural Machine Translation in PyTorch
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet

Releases(v2.0.0)
Owner
PhD candidate at IST Austria. Working on Machine Learning, Robotics, and Verification
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 342 Jan 05, 2023
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
A highly sophisticated sequence-to-sequence model for code generation

CoderX A proof-of-concept AI system by Graham Neubig (June 30, 2021). About CoderX CoderX is a retrieval-based code generation AI system reminiscent o

Graham Neubig 39 Aug 03, 2021
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
This is a GUI program that will generate a word search puzzle image

Word Search Puzzle Generator Table of Contents About The Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing Cont

11 Feb 22, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
Stack based programming language that compiles to x86_64 assembly or can alternatively be interpreted in Python

lang lang is a simple stack based programming language written in Python. It can

Christoffer Aakre 1 May 30, 2022
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022