Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Overview

Expressive Power of Invariant and Equivaraint Graph Neural Networks

In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alignment problem. This code was used to derive the practical results in the following paper:

Waiss Azizian, Marc Lelarge. Expressive Power of Invariant and Equivariant Graph Neural Networks, ICLR 2021.

arXiv OpenReview

Problem: alignment of graphs

The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. Here we consider a noisy version of this problem: the two graphs below are noisy versions of a parent graph. There is no strict isomorphism between them. Can we still match the vertices of graph 1 with the corresponding vertices of graph 2?

graph 1 graph 2

With our GNN, we obtain the following results: green vertices are well paired vertices and red vertices are errors. Both graphs are now represented using the layout from the right above but the color of the vertices are the same on both sides. At inference, our GNN builds node embedding for the vertices of graphs 1 and 2. Finally a node of graph 1 is matched to its most similar node of graph 2 in this embedding space.

graph 1 graph 2

Below, on the left, we plot the errors made by our GNN: errors made on red vertices are represented by links corresponding to a wrong matching or cycle; on the right, we superpose the two graphs: green edges are in both graphs (they correspond to the parent graph), orange edges are in graph 1 only and blue edges are in graph 2 only. We clearly see the impact of the noisy edges (orange and blue) as each red vertex (corresponding to an error) is connected to such edges (except the isolated red vertex).

Wrong matchings/cycles Superposing the 2 graphs

To measure the performance of our GNN, instead of looking at vertices, we can look at edges. On the left below, we see that our GNN recovers most of the green edges present in graphs 1 and 2 (edges from the parent graph). On the right, mismatched edges correspond mostly to noisy (orange and blue) edges (present in only one of the graphs 1 or 2).

Matched edges Mismatched edges

Training GNN for the graph alignment problem

For the training of our GNN, we generate synthetic datasets as follows: first sample the parent graph and then add edges to construct graphs 1 and 2. We obtain a dataset made of pairs of graphs for which we know the true matching of vertices. We then use a siamese encoder as shown below where the same GNN (i.e. shared weights) is used for both graphs. The node embeddings constructed for each graph are then used to predict the corresponding permutation index by taking the outer product and a softmax along each row. The GNN is trained with a standard cross-entropy loss. At inference, we can add a LAP solver to get a permutation from the matrix .

Various architectures can be used for the GNN and we find that FGNN (first introduced by Maron et al. in Provably Powerful Graph Networks NeurIPS 2019) are best performing for our task. In our paper Expressive Power of Invariant and Equivariant Graph Neural Networks, we substantiate these empirical findings by proving that FGNN has a better power of approximation among all equivariant architectures working with tensors of order 2 presented so far (this includes message passing GNN or linear GNN).

Results

Each line corresponds to a model trained at a given noise level and shows its accuracy across all noise levels. We see that pretrained models generalize very well at noise levels unseen during the training.

We provide a simple notebook to reproduce this result for the pretrained model released with this repository (to run the notebook create a ipykernel with name gnn and with the required dependencies as described below).

We refer to our paper for comparisons with other algorithms (message passing GNN, spectral or SDP algorithms).

To cite our paper:

@inproceedings{azizian2020characterizing,
  title={Expressive power of invariant and equivariant graph neural networks},
  author={Azizian, Wa{\"\i}ss and Lelarge, Marc},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=lxHgXYN4bwl}
}

Overview of the code

Project structure

.
├── loaders
|   └── dataset selector
|   └── data_generator.py # generating random graphs
|   └── test_data_generator.py
|   └── siamese_loader.py # loading pairs 
├── models
|   └── architecture selector
|   └── layers.py # equivariant block
|   └── base_model.py # powerful GNN Graph -> Graph
|   └── siamese_net.py # GNN to match graphs
├── toolbox
|   └── optimizer and losses selectors
|   └── logger.py  # keeping track of most results during training
|   └── metrics.py # computing scores
|   └── losses.py  # computing losses
|   └── optimizer.py # optimizers
|   └── utility.py
|   └── maskedtensor.py # Tensor-like class to handle batches of graphs of different sizes
├── commander.py # main file from the project serving for calling all necessary functions for training and testing
├── trainer.py # pipelines for training and validation
├── eval.py # testing models

Dependencies

Dependencies are listed in requirements.txt. To install, run

pip install -r requirements.txt

Training

Run the main file commander.py with the command train

python train commander.py

To change options, use Sacred command-line interface and see default.yaml for the configuration structure. For instance,

python commander.py train with cpu=No data.generative_model=Regular train.epoch=10 

You can also copy default.yaml and modify the configuration parameters there. Loading the configuration in other.yaml (or other.json) can be done with

python commander.py train with other.yaml

See Sacred documentation for an exhaustive reference.

To save logs to Neptune, you need to provide your own API key via the dedicated environment variable.

The model is regularly saved in the folder runs.

Evaluating

There are two ways of evaluating the models. If you juste ran the training with a configuration conf.yaml, you can simply do,

python commander.py eval with conf.yaml

You can omit with conf.yaml if you are using the default configuartion.

If you downloaded a model with a config file from here, you can edit the section test_data of this config if you wish and then run,

python commander.py eval with /path/to/config model_path=/path/to/model.pth.tar
Comments
  • need 2 different model_path variables

    need 2 different model_path variables

    When not starting anew, model_path_load should contain the path to the model. model_path should then be the path to save the new learned model. Right now, the model_path_load is used for the evaluation!

    bug 
    opened by mlelarge 1
  • Unify the different problems

    Unify the different problems

    The previous commands for training and evaluation should still work the same, even though it uses a different configuration file at the beginning. It still uses Sacred the same way for the commander.py. The problem can be switched from the config file. The main change in the previous code is the use of the Helper class (in toolbox/helper.py) which is the class that coordinates each problem (see the file for further info).

    Also added the 'article_commander.py' which generates the data for comparison between planted problems and the corresponding NP-problem, which works in a similar way to commander.py.

    opened by MauTrib 1
  • Reorganize a commander.py

    Reorganize a commander.py

    This PR tries to unify the train and eval CLI wth the use of a single config file. See default.yaml for the result and the README for more information. Please, don't hesitate to comment on changes you don't approve or dislike. Bests,

    opened by wazizian 1
  • Fix convention for tensor shapes

    Fix convention for tensor shapes

    Hi! I am modifying the code so the same convention for the shape of tensors is used everywhere (see PR). But I'm not sure we have chosen the right one. You and we have chosen(bs, n_vertices, n_vertices, features)but Marron preferred (bs, features, n_vertices, n_vertices). Indeed the later matches Pytorch's convention for images and so makes convolutions natural. In one case, MLPs and blocks have to be adapted and in the other, it is the data generation process, so it is a similar amount of work. What do you think ? Bests, Waïss

    opened by wazizian 1
  • added normalization + embeddings

    added normalization + embeddings

    I modified slightly the architecture and training seems much better and more stable. I added a first embedding layer and BN after multiplication and at the output.

    opened by mlelarge 0
Releases(QAP)
  • QAP(Jan 21, 2021)

    Config: "data": {"num_examples_train": 20000, "num_examples_val": 1000, "generative_model": "Regular", "noise_model": "ErdosRenyi", "edge_density": 0.2, "n_vertices": 50, "vertex_proba": 1.0, "noise": 0.15, "path_dataset": "dataset"}, "train": {"epoch": 50, "batch_size": 32, "lr": 0.0001, "scheduler_step": 5, "scheduler_decay": 0.9, "print_freq": 100, "loss_reduction": "mean"}, "arch": {"arch": "Siamese_Model", "model_name": "Simple_Node_Embedding", "num_blocks": 2, "original_features_num": 2, "in_features": 64, "out_features": 64, "depth_of_mlp": 3}

    Source code(tar.gz)
    Source code(zip)
    config.json(601 bytes)
    model_best.pth.tar(333.26 KB)
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022