Instance-based label smoothing for improving deep neural networks generalization and calibration

Overview

Instance-based Label Smoothing for Neural Networks

  • Pytorch Implementation of the algorithm.
  • This repository includes a new proposed method for instance-based label smoothing in neural networks, where the target probability distribution is not uniformly distributed among incorrect classes. Instead, each incorrect class is going to be assigned a target probability that is proportional to the output score of this particular class relative to all the remaining classes for a network trained with vanilla cross-entropy loss on the hard target labels.
Instance-based Label Smoothing idea
  • The following figure summarizes the idea of our instance-based label smoothing that aims to keep the information about classes similarity structure while training using label smoothing.
Instance-based Label Smoothing process

Requirements

  • Python 3.x
  • pandas
  • numpy
  • pytorch

Usage

Datasets

  • CIFAR10 / CIFAR100 / FashionMNIST

Files Content

The project have a structure as below:

├── Vanilla-cross-entropy.py
├── Label-smoothing.py
├── Instance-based-smoothing.py
├── Models-evaluation.py
├── Network-distillation.py
├── utils
│   ├── data_loader.py
│   ├── utils.py
│   ├── evaluate.py
│   ├── params.json
├── models
│   ├── resnet.py
│   ├── densenet.py
│   ├── inception.py
│   ├── shallownet.py

Vanilla-cross-entropy.py is the file used for training the networks using cross-entropy without label smoothing.
Label-smoothing.py is the file used for training the networks using cross-entropy with standard label smoothing.
Instance-based-smoothing.py is the file used for training the networks using cross-entropy with instance-based label smoothing.
Models-evaluation.py is the file used for evaluation of the trained networks.
Network-distillation.py is the file used for distillation of trained networks into a shallow convolutional network of 5 layers.
models/ includes all the implementations of the different architectures used in our evaluation like ResNet, DenseNet, Inception-V4. Also, the shallow-cnn student network used in distillation experiments.
utils/ includes all utilities functions required for the different models training and evaluation.

Example

python Instance-based-smoothing.py --dataset cifar10 --model resnet18 --num_classes 10

List of Arguments accepted for Codes of Training and Evaluation of Different Models:

--lr type = float, default = 0.1, help = Starting learning rate (A weight decay of $1e^{-4}$ is used).
--tr_size type = float, default = 0.8, help = Size of training set split out of the whole training set (0.2 for validation).
--batch_size type = int, default = 512, help = Batch size of mini-batch training process.
--epochs type = int, default = 100, help = Number of training epochs.
--estop type = int, default = 10, help = Number of epochs without loss improvement leading to early stopping.
--ece_bins type = int, default = 10, help = Number of bins for expected calibration error calculation.
--dataset, type=str, help=Name of dataset to be used (cifar10/cifar100/fashionmnist).
--num_classes type = int, default = 10, help = Number of classes in the dataset.
--model, type=str, help=Name of the model to be trained. eg: resnet18 / resnet50 / inceptionv4 / densetnet (works for FashionMNIST only).

Results

  • Results of the comparison of different methods on 3 datasets using 4 different architectures are reported in the following table.
  • The experiments were repeated 3 times, and average $\pm$ stdev of log loss, expected calibration error (ECE), accuracy, distilled student network accuracy and distilled student log loss metrics are reported.
  • A t-sne visualization for the logits of 3-different classes in CIFAR-10 can be shown below:
Owner
Mohamed Maher
Junior Research Fellow
Mohamed Maher
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022