Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Related tags

Deep LearningPOSA
Overview

Populating 3D Scenes by Learning Human-Scene Interaction

[Project Page] [Paper]

POSA Examples

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use the POSA data, model and software, (the "Data & Software"), including 3D meshes, images, videos, textures, software, scripts, and animations. By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of the corresponding github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Description

This repository contains the training, random sampling, and scene population code used for the experiments in POSA.

Installation

To install the necessary dependencies run the following command:

    pip install -r requirements.txt

The code has been tested with Python 3.7, CUDA 10.0, CuDNN 7.5 and PyTorch 1.7 on Ubuntu 20.04.

Dependencies

POSA_dir

To be able to use the code you need to get the POSA_dir.zip. After unzipping, you should have a directory with the following structure:

POSA_dir
├── cam2world
├── data
├── mesh_ds
├── scenes
├── sdf
└── trained_models

The content of each folder is explained below:

  • trained_models contains two trained models. One is trained on the contact only and the other one is trained on contact and semantics.
  • data contains the train and test data extracted from the PROX Dataset and PROX-E Dataset.
  • scenes contains the 12 scenes from PROX Dataset
  • sdf contains the signed distance field for the scenes in the previous folder.
  • mesh_ds contains mesh downsampling and upsampling related files similar to the ones in COMA.

SMPL-X

You need to get the SMPLx Body Model. Please extract the folder and rename it to smplx_models and place it in the POSA_dir above.

AGORA

In addition, you need to get the POSA_rp_poses.zip file from AGORA Dataset and extract in the POSA_dir. This file contrains a number of test poses to be used in the next steps. Note that you don't need the whole AGORA dataset.

Finally run the following command or add it to your ~/.bashrc

export POSA_dir=Path of Your POSA_dir

Inference

You can test POSA using the trained models provided. Below we provide examples of how to generate POSA features and how to pupulate a 3D scene.

Random Sampling

To generate random features from a trained model, run the following command

python src/gen_rand_samples.py --config cfg_files/contact.yaml --checkpoint_path $POSA_dir/trained_models/contact.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --render 1 --viz 1 --num_rand_samples 3 

Or

python src/gen_rand_samples.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --render 1 --viz 1 --num_rand_samples 3 

This will open a window showing the generated features for the specified pkl file. It also render the features to the folder random_samples in POSA_dir.

The number of generated feature maps can be controlled by the flag num_rand_samples.

If you don't have a screen, you can turn off the visualization --viz 0.

If you don't have CUDA installed then you can add this flag --use_cuda 0. This applies to all commands in this repository.

You can also run the same command on the whole folder of test poses

python src/gen_rand_samples.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses --render 1 --viz 1 --num_rand_samples 3 

Scene Population

Given a body mesh from the AGORA Dataset, POSA automatically places the body mesh in 3D scene.

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --scene_name MPH16 --render 1 --viz 1 

This will open a window showing the placed body in the scene. It also render the placements to the folder affordance in POSA_dir.

You can control the number of placements for the same body mesh in a scene using the flag num_rendered_samples, default value is 1.

The generated feature maps can be shown by setting adding --show_gen_sample 1

You can also run the same script on the whole folder of test poses

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses --scene_name MPH16 --render 1 --viz 1 

To place clothed body meshes, you need to first buy the Renderpeople assets, or get the free models. Create a folder rp_clothed_meshes in POSA_dir and place all the clothed body .obj meshes in this folder. Then run this command:

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --scene_name MPH16 --render 1 --viz 1 --use_clothed_mesh 1

Testing on Your Own Poses

POSA has been tested on the AGORA dataset only. Nonetheless, you can try POSA with any SMPL-X poses you have. You just need a .pkl file with the SMPLX body parameters and the gender. Your SMPL-X vertices must be brought to a canonical form similar to the POSA training data. This means the vertices should be centered at the pelvis joint, the x axis pointing to the left, the y axis pointing backward, and the z axis pointing upwards. As shown in the figure below. The x,y,z axes are denoted by the red, green, blue colors respectively.

canonical_form

See the function pkl_to_canonical in data_utils.py for an example of how to do this transformation.

Training

To retrain POSA from scratch run the following command

python src/train_posa.py --config cfg_files/contact_semantics.yaml

Visualize Ground Truth Data

You can also visualize the training data

python src/show_gt.py --config cfg_files/contact_semantics.yaml --train_data 1

Or test data

python src/show_gt.py --config cfg_files/contact_semantics.yaml --train_data 0

Note that the ground truth data has been downsampled to speed up training as explained in the paper. See training details in appendices.

Citation

If you find this Model & Software useful in your research we would kindly ask you to cite:

@inproceedings{Hassan:CVPR:2021,
    title = {Populating {3D} Scenes by Learning Human-Scene Interaction},
    author = {Hassan, Mohamed and Ghosh, Partha and Tesch, Joachim and Tzionas, Dimitrios and Black, Michael J.},
    booktitle = {Proceedings {IEEE/CVF} Conf.~on Computer Vision and Pattern Recognition ({CVPR})},
    month = jun,
    month_numeric = {6},
    year = {2021}
}

If you use the extracted training data, scenes or sdf the please cite:

@inproceedings{PROX:2019,
  title = {Resolving {3D} Human Pose Ambiguities with {3D} Scene Constraints},
  author = {Hassan, Mohamed and Choutas, Vasileios and Tzionas, Dimitrios and Black, Michael J.},
  booktitle = {International Conference on Computer Vision},
  month = oct,
  year = {2019},
  url = {https://prox.is.tue.mpg.de},
  month_numeric = {10}
}
@inproceedings{PSI:2019,
  title = {Generating 3D People in Scenes without People},
  author = {Zhang, Yan and Hassan, Mohamed and Neumann, Heiko and Black, Michael J. and Tang, Siyu},
  booktitle = {Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2020},
  url = {https://arxiv.org/abs/1912.02923},
  month_numeric = {6}
}

If you use the AGORA test poses, the please cite:

@inproceedings{Patel:CVPR:2021,
  title = {{AGORA}: Avatars in Geography Optimized for Regression Analysis},
  author = {Patel, Priyanka and Huang, Chun-Hao P. and Tesch, Joachim and Hoffmann, David T. and Tripathi, Shashank and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}
}

Contact

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Mohamed Hassan
Mohamed Hassan
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022