Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

Overview

DTI-Sprites

Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper

Check out our paper and webpage for details!

teaser.jpg

If you find this code useful in your research, please cite:

@article{monnier2021dtisprites,
  title={{Unsupervised Layered Image Decomposition into Object Prototypes}},
  author={Monnier, Tom and Vincent, Elliot and Ponce, Jean and Aubry, Mathieu},
  journal={arXiv},
  year={2021},
}

Installation ๐Ÿ‘ท

1. Create conda environment

conda env create -f environment.yml
conda activate dti-sprites

Optional: some monitoring routines are implemented, you can use them by specifying the visdom port in the config file. You will need to install visdom from source beforehand

git clone https://github.com/facebookresearch/visdom
cd visdom && pip install -e .

2. Download non-torchvision datasets

./download_data.sh

This command will download following datasets:

  • Tetrominoes, Multi-dSprites and CLEVR6 (link to the original repo multi-object datasets with raw tfrecords)
  • GTSRB (link to the original dataset page)
  • Weizmann Horse database (link to the original dataset page)
  • Instagram collections associated to #santaphoto and #weddingkiss (link to the original repo with datasets links and descriptions)

NB: it may happen that gdown hangs, if so you can download them by hand with following gdrive links, unzip and move them to the datasets folder:

How to use ๐Ÿš€

1. Launch a training

cuda=gpu_id config=filename.yml tag=run_tag ./pipeline.sh

where:

  • gpu_id is a target cuda device id,
  • filename.yml is a YAML config located in configs folder,
  • run_tag is a tag for the experiment.

Results are saved at runs/${DATASET}/${DATE}_${run_tag} where DATASET is the dataset name specified in filename.yml and DATE is the current date in mmdd format. Some training visual results like sprites evolution and reconstruction examples will be saved. Here is an example from Tetrominoes dataset:

Reconstruction examples

tetro_rec.gif

Sprites evolution and final

tetro_sprites.gif

tetro_sprites_final.png

More visual results are available at https://imagine.enpc.fr/~monniert/DTI-Sprites/extra_results/.

2. Reproduce our quantitative results

To launch 5 runs on Tetrominoes benchmark and reproduce our results:

cuda=gpu_id config=tetro.yml tag=default ./multi_pipeline.sh

Available configs are:

  • Multi-object benchmarks: tetro.yml, dpsrites_gray.yml, clevr6.yml
  • Clustering benchmarks: gtsrb8.yml, svhn.yml
  • Cosegmentation dataset: horse.yml

3. Reproduce our qualitative results on Instagram collections

  1. (skip if already downloaded with script above) Create a santaphoto dataset by running process_insta_santa.sh script. It can take a while to scrape the 10k posts from Instagram.
  2. Launch training with cuda=gpu_id config=instagram.yml tag=santaphoto ./pipeline.sh

That's it!

Top 8 sprites discovered

santa_sprites.jpg

Decomposition examples

santa_rec.jpg

Further information

If you like this project, please check out related works on deep transformations from our group:

Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
๐Ÿ”ฅ Cannlytics-powered artificial intelligence ๐Ÿค–

Cannlytics AI ๐Ÿ”ฅ Cannlytics-powered artificial intelligence ๐Ÿค– ๐Ÿ—๏ธ Installation ๐Ÿƒโ€โ™€๏ธ Quickstart ๐Ÿงฑ Development ๐Ÿฆพ Automation ๐Ÿ’ธ Support ๐Ÿ›๏ธ License ?

Cannlytics 3 Nov 11, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Languageโ€“Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022