๐Ÿฆ… Pretrained BigBird Model for Korean (up to 4096 tokens)

Overview

Pretrained BigBird Model for Korean

What is BigBird โ€ข How to Use โ€ข Pretraining โ€ข Evaluation Result โ€ข Docs โ€ข Citation

ํ•œ๊ตญ์–ด | English

Apache 2.0 Issues linter DOI

What is BigBird?

BigBird: Transformers for Longer Sequences์—์„œ ์†Œ๊ฐœ๋œ sparse-attention ๊ธฐ๋ฐ˜์˜ ๋ชจ๋ธ๋กœ, ์ผ๋ฐ˜์ ์ธ BERT๋ณด๋‹ค ๋” ๊ธด sequence๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿฆ… Longer Sequence - ์ตœ๋Œ€ 512๊ฐœ์˜ token์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” BERT์˜ 8๋ฐฐ์ธ ์ตœ๋Œ€ 4096๊ฐœ์˜ token์„ ๋‹ค๋ฃธ

โฑ๏ธ Computational Efficiency - Full attention์ด ์•„๋‹Œ Sparse Attention์„ ์ด์šฉํ•˜์—ฌ O(n2)์—์„œ O(n)์œผ๋กœ ๊ฐœ์„ 

How to Use

  • ๐Ÿค— Huggingface Hub์— ์—…๋กœ๋“œ๋œ ๋ชจ๋ธ์„ ๊ณง๋ฐ”๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:)
  • ์ผ๋ถ€ ์ด์Šˆ๊ฐ€ ํ•ด๊ฒฐ๋œ transformers>=4.11.0 ์‚ฌ์šฉ์„ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค. (MRC ์ด์Šˆ ๊ด€๋ จ PR)
  • BigBirdTokenizer ๋Œ€์‹ ์— BertTokenizer ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. (AutoTokenizer ์‚ฌ์šฉ์‹œ BertTokenizer๊ฐ€ ๋กœ๋“œ๋ฉ๋‹ˆ๋‹ค.)
  • ์ž์„ธํ•œ ์‚ฌ์šฉ๋ฒ•์€ BigBird Tranformers documentation์„ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”.
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained("monologg/kobigbird-bert-base")  # BigBirdModel
tokenizer = AutoTokenizer.from_pretrained("monologg/kobigbird-bert-base")  # BertTokenizer

Pretraining

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Pretraining BigBird] ์ฐธ๊ณ 

Hardware Max len LR Batch Train Step Warmup Step
KoBigBird-BERT-Base TPU v3-8 4096 1e-4 32 2M 20k
  • ๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜, ํ•œ๊ตญ์–ด ์œ„ํ‚ค, Common Crawl, ๋‰ด์Šค ๋ฐ์ดํ„ฐ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต
  • ITC (Internal Transformer Construction) ๋ชจ๋ธ๋กœ ํ•™์Šต (ITC vs ETC)

Evaluation Result

1. Short Sequence (<=512)

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Finetune on Short Sequence Dataset] ์ฐธ๊ณ 

NSMC
(acc)
KLUE-NLI
(acc)
KLUE-STS
(pearsonr)
Korquad 1.0
(em/f1)
KLUE MRC
(em/rouge-w)
KoELECTRA-Base-v3 91.13 86.87 93.14 85.66 / 93.94 59.54 / 65.64
KLUE-RoBERTa-Base 91.16 86.30 92.91 85.35 / 94.53 69.56 / 74.64
KoBigBird-BERT-Base 91.18 87.17 92.61 87.08 / 94.71 70.33 / 75.34

2. Long Sequence (>=1024)

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Finetune on Long Sequence Dataset] ์ฐธ๊ณ 

TyDi QA
(em/f1)
Korquad 2.1
(em/f1)
Fake News
(f1)
Modu Sentiment
(f1-macro)
KLUE-RoBERTa-Base 76.80 / 78.58 55.44 / 73.02 95.20 42.61
KoBigBird-BERT-Base 79.13 / 81.30 67.77 / 82.03 98.85 45.42

Docs

Citation

KoBigBird๋ฅผ ์‚ฌ์šฉํ•˜์‹ ๋‹ค๋ฉด ์•„๋ž˜์™€ ๊ฐ™์ด ์ธ์šฉํ•ด์ฃผ์„ธ์š”.

@software{jangwon_park_2021_5654154,
  author       = {Jangwon Park and Donggyu Kim},
  title        = {KoBigBird: Pretrained BigBird Model for Korean},
  month        = nov,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {1.0.0},
  doi          = {10.5281/zenodo.5654154},
  url          = {https://doi.org/10.5281/zenodo.5654154}
}

Contributors

Jangwon Park and Donggyu Kim

Acknowledgements

KoBigBird๋Š” Tensorflow Research Cloud (TFRC) ํ”„๋กœ๊ทธ๋žจ์˜ Cloud TPU ์ง€์›์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

๋˜ํ•œ ๋ฉ‹์ง„ ๋กœ๊ณ ๋ฅผ ์ œ๊ณตํ•ด์ฃผ์‹  Seyun Ahn๋‹˜๊ป˜ ๊ฐ์‚ฌ๋ฅผ ์ „ํ•ฉ๋‹ˆ๋‹ค.

You might also like...
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Generating Korean Slogans with phonetic and structural repetition
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Korean extractive summarization. 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ
Korean extractive summarization. 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ

korean extractive summarization 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ Leaderboard Notice Text Summarization with Pretrained Encoders์— ๋‚˜์˜ค๋Š” bertsumext๋ชจ๋ธ(ext

Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis ์™œ ํ•œ๊ตญ์–ด ๊ฐ์ • ๋‹ค์ค‘๋ถ„๋ฅ˜ ๋ชจ๋ธ์€ ๊ฑฐ์˜ ์—†๋Š” ๊ฒƒ์ผ๊นŒ?์—์„œ ์‹œ์ž‘๋œ ํ”„๋กœ์ ํŠธ Environment: Pytorch, Da

Korean Sentence Embedding Repository

Korean-Sentence-Embedding ๐Ÿญ Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in a matter of minutes. Based on our experiments with a wide range of benchmarks, ProteinBERT usually achieves state-of-the-art performance. ProteinBERT is built on TenforFlow/Keras.

IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet ๐Ÿฆ ๐Ÿ‡ฎ๐Ÿ‡ฉ 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

Crie tokens de autenticaรงรฃo รญntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) รฉ uma bilioteca criada para ser utilizada na geraรงรฃo de tokens seguros e รญntegros, ou seja, nรฃ

Comments
  • Pretraining Epoch ์งˆ๋ฌธ

    Pretraining Epoch ์งˆ๋ฌธ

    Checklist

    • [x] I've searched the project's issues

    โ“ Question

    ์•ˆ๋…•ํ•˜์„ธ์š” ์ €๋Š” ํ˜„์žฌ ์นœ๊ตฌ๋“ค๊ณผ ํ•จ๊ป˜ 4096 ํ† ํฐ์„ ์ž…๋ ฅ๋ฐ›์•„ ์š”์•ฝ ํƒœ์Šคํฌ๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ฒ˜์Œ์—” ๋น…๋ฒ„๋“œ + ๋ฒ„ํŠธ ์กฐํ•ฉ์œผ๋กœ ํ•ด๋ณด๋ ค๊ณ  ํ–ˆ๋Š”๋ฐ, ์ด๋ฏธ monologg ๋‹˜๊ป˜์„œ ๋งŒ๋“ค์–ด์ฃผ์…จ๋”๋ผ๊ตฌ์š” ใ…Žใ…Ž ๊ทธ๋ž˜์„œ ๋กฑํฌ๋จธ + ๋ฐ”ํŠธ + ํŽ˜๊ฐ€์ˆ˜์Šค ์กฐํ•ฉ์œผ๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๋ ค ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. pretrained๋œ KoBart๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์–ดํ…์…˜์„ ๋กฑํฌ๋จธ๋กœ ๋ฐ”๊พผ ํ›„, ํŽ˜๊ฐ€์ˆ˜์Šค task๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ตฌ์กฐ๋กœ ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

    ํ˜„์žฌ 13GB์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์•„์„œ ์ „์ฒ˜๋ฆฌ์™€ ๋ฐ์ดํ„ฐ๋กœ๋” ์ž‘์„ฑ, ๋ชจ๋ธ ์ฝ”๋“œ๊นŒ์ง€๋Š” ์™„๋ฃŒํ•œ ์ƒํƒœ์ž…๋‹ˆ๋‹ค. ์ด๋ฒˆ ์ฃผ ๋‚ด๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๋ ค ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

    ์ €ํฌ๊ฐ€ ๊ฐ€์ง„ GPU๋กœ๋Š” ๋Œ€๋žต ์ดํ‹€์ด๋ฉด 1 ์—ํฌํฌ๋ฅผ ๋Œ ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™์€๋ฐ, monologg๋‹˜๊ป˜์„œ๋Š” KoBirBird ๋ชจ๋ธ ๊ฐœ๋ฐœ ์‹œ ์—ํฌํฌ๋ฅผ ์–ผ๋งˆ๋‚˜ ๋„์…จ๋Š”์ง€ ์—ฌ์ญค๋ณด๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.

    ์•„๋ฌด๋ž˜๋„ pretrained ๋œ ๋ชจ๋ธ์„ ๊ฐ€์ ธ๋‹ค ์“ฐ๋‹ค๋ณด๋‹ˆ ์—ํฌํฌ๋ฅผ ๋งŽ์ด ๋Œ ํ•„์š”๋Š” ์—†์„ ๊ฒƒ ๊ฐ™์€๋ฐ, ๊ธฐ์ค€์ ์œผ๋กœ ์‚ผ๊ณ  ์‹ถ์–ด์„œ์š”!

    ๋ง์ด ๊ธธ์–ด์กŒ๋Š”๋ฐ ์š”์•ฝํ•˜์ž๋ฉด, KoBirBird ํ•™์Šต ์‹œ ์—ํฌํฌ๋ฅผ ์–ผ๋งˆ๋‚˜ ์ฃผ์…จ๋Š”์ง€ ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๊ทธ ๊ธฐ์ค€์€ ๋ฌด์—‡์œผ๋กœ ์‚ผ์œผ์…จ๋Š”์ง€๋„ ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค.

    question 
    opened by KimJaehee0725 2
  • Specific information about this model.

    Specific information about this model.

    Checklist

    • [ x ] I've searched the project's issues

    โ“ Question

    • You mentioned "๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜, ํ•œ๊ตญ์–ด ์œ„ํ‚ค, Common Crawl, ๋‰ด์Šค ๋ฐ์ดํ„ฐ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต" and I want to know the size of total corpus for pre-training.

    • Also I want to know the vocab size of this model.

    ๐Ÿ“Ž Additional context

    question 
    opened by midannii 2
  • Fix some minors

    Fix some minors

    Description

    ์ฝ”๋“œ์™€ ์ฃผ์„ ๋“ฑ์„ ์ฝ๋‹ค๊ฐ€ ๋ณด์ธ ์ž‘์€ ์˜คํƒ€ ๋“ฑ์„ ์ˆ˜์ •ํ–ˆ์Šต๋‹ˆ๋‹ค

    ๋‹ค์–‘ํ•œ ๋…ธํ•˜์šฐ๋ฅผ ์•„๋‚Œ์—†์ด ๊ณต์œ ํ•ด์ฃผ์‹  @monologg , @donggyukimc ์—๊ฒŒ ๊ฐ์‚ฌ์˜ ๋ง์”€๋“œ๋ฆฝ๋‹ˆ๋‹ค.

    ์ดํ›„์—๋Š” GPU ํ™˜๊ฒฝ์—์„œ finetuning์„ ํ…Œ์ŠคํŠธํ•ด ๋ณผ ์˜ˆ์ •์ž…๋‹ˆ๋‹ค ๊ณ ๋ง™์Šต๋‹ˆ๋‹ค.

    Related Issue

    chore 
    opened by sackoh 0
Releases(v1.0.0)
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
Train ๐Ÿค—transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022
A single model that parses Universal Dependencies across 75 languages.

A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.

Dan Kondratyuk 189 Nov 29, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing ๐ŸŽ‰ ๐ŸŽ‰ ๐ŸŽ‰ We released the 2.0.0 version with TF2 Support. ๐ŸŽ‰ ๐ŸŽ‰ ๐ŸŽ‰ If you

Eliyar Eziz 2.3k Dec 29, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend ๆœฌ้กน็›ฎไธบ https://asoul.infedg.xyz/ ็š„ๅŽ็ซฏใ€‚ ๆจกๅž‹ไธบๅŸบไบŽ CPM-Distill ็š„ transformers ่ฝฌๅŒ–็‰ˆๆœฌ CPM-Generate-distill ่ฎญ็ปƒ่€Œๆˆใ€‚

infinityedge 46 Dec 11, 2022
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
Bu Chatbot, Konya Bilim Merkezi Yen iรงin tasarlanmฤฑลŸ olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi iรงin 2021 Yฤฑlฤฑnda tasarlanmฤฑลŸ olan bir projedir. Chatbot Python ortamฤฑnda yazฤฑlmฤฑลŸtฤฑr. Sรถ

Emre ร–zkul 1 Feb 23, 2022
LeBenchmark: a reproducible framework for assessing SSL from speech

LeBenchmark: a reproducible framework for assessing SSL from speech

11 Nov 30, 2022
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Zhuosheng Zhang 3 Apr 14, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021