LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Overview

Query Selector

Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sparse attention Transformer algorithm that is especially suitable for long term time series forecasting

Depencency

Python            3.7.9
deepspeed         0.4.0
numpy             1.20.3
pandas            1.2.4
scipy             1.6.3
tensorboardX      1.8
torch             1.7.1
torchaudio        0.7.2
torchvision       0.8.2
tqdm              4.61.0

Results on ETT dataset

Univariate

Data Prediction len Informer MSE Informer MAE Trans former MSE Trans former MAE Query Selector MSE Query Selector MAE MSE ratio
ETTh1 24 0.0980 0.2470 0.0548 0.1830 0.0436 0.1616 0.445
ETTh1 48 0.1580 0.3190 0.0740 0.2144 0.0721 0.2118 0.456
ETTh1 168 0.1830 0.3460 0.1049 0.2539 0.0935 0.2371 0.511
ETTh1 336 0.2220 0.3870 0.1541 0.3201 0.1267 0.2844 0.571
ETTh1 720 0.2690 0.4350 0.2501 0.4213 0.2136 0.3730 0.794
ETTh2 24 0.0930 0.2400 0.0999 0.2479 0.0843 0.2239 0.906
ETTh2 48 0.1550 0.3140 0.1218 0.2763 0.1117 0.2622 0.721
ETTh2 168 0.2320 0.3890 0.1974 0.3547 0.1753 0.3322 0.756
ETTh2 336 0.2630 0.4170 0.2191 0.3805 0.2088 0.3710 0.794
ETTh2 720 0.2770 0.4310 0.2853 0.4340 0.2585 0.4130 0.933
ETTm1 24 0.0300 0.1370 0.0143 0.0894 0.0139 0.0870 0.463
ETTm1 48 0.0690 0.2030 0.0328 0.1388 0.0342 0.1408 0.475
ETTm1 96 0.1940 0.2030 0.0695 0.2085 0.0702 0.2100 0.358
ETTm1 288 0.4010 0.5540 0.1316 0.2948 0.1548 0.3240 0.328
ETTm1 672 0.5120 0.6440 0.1728 0.3437 0.1735 0.3427 0.338

Multivariate

Data Prediction len Informer MSE Informer MAE Trans former MSE Trans former MAE Query Selector MSE Query Selector MAE MSE ratio
ETTh1 24 0.5770 0.5490 0.4496 0.4788 0.4226 0.4627 0.732
ETTh1 48 0.6850 0.6250 0.4668 0.4968 0.4581 0.4878 0.669
ETTh1 168 0.9310 0.7520 0.7146 0.6325 0.6835 0.6088 0.734
ETTh1 336 1.1280 0.8730 0.8321 0.7041 0.8503 0.7039 0.738
ETTh1 720 1.2150 0.8960 1.1080 0.8399 1.1150 0.8428 0.912
ETTh2 24 0.7200 0.6650 0.4237 0.5013 0.4124 0.4864 0.573
ETTh2 48 1.4570 1.0010 1.5220 0.9488 1.4074 0.9317 0.966
ETTh2 168 3.4890 1.5150 1.6225 0.9726 1.7385 1.0125 0.465
ETTh2 336 2.7230 1.3400 2.6617 1.2189 2.3168 1.1859 0.851
ETTh2 720 3.4670 1.4730 3.1805 1.3668 3.0664 1.3084 0.884
ETTm1 24 0.3230 0.3690 0.3150 0.3886 0.3351 0.3875 0.975
ETTm1 48 0.4940 0.5030 0.4454 0.4620 0.4726 0.4702 0.902
ETTm1 96 0.6780 0.6140 0.4641 0.4823 0.4543 0.4831 0.670
ETTm1 288 1.0560 0.7860 0.6814 0.6312 0.6185 0.5991 0.586
ETTm1 672 1.1920 0.9260 1.1365 0.8572 1.1273 0.8412 0.946

State Of Art

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

Citation

@misc{klimek2021longterm,
      title={Long-term series forecasting with Query Selector -- efficient model of sparse attention}, 
      author={Jacek Klimek and Jakub Klimek and Witold Kraskiewicz and Mateusz Topolewski},
      year={2021},
      eprint={2107.08687},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Contact

If you have any questions please contact us by email - [email protected]

Owner
MORAI
MORAI
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022