Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Related tags

Deep LearningMADA
Overview

Multi-Anchor Active Domain Adaptation for Semantic Segmentation

Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Yefeng Zheng

[Paper] [PPT] [Graphic Abstract]

Table of Contents

Introduction

This respository contains the MADA method as described in the ICCV 2021 Oral paper "Multi-Anchor Active Domain Adaptation for Semantic Segmentation".

Requirements

The code requires Pytorch >= 0.4.1 with python 3.6. The code is trained using a NVIDIA Tesla V100 with 32 GB memory. You can simply reduce the batch size in stage 2 to run on a smaller memory.

Usage

  1. Preparation:
  • Download the GTA5 dataset as the source domain, and the Cityscapes dataset as the target domain.
  • Download the weights and features. Move features to the MADA directory.
  1. Setup the config files.
  • Set the data paths
  • Set the pretrained model paths
  1. Training-quick
  • To run the code with our weights and anchors (anchors/cluster_centroids_full_10.pkl):
python3 train_active_stage1.py
python3 train_active_stage2.py
  • During the training, the generated files (log file) will be written in the folder 'runs/..'.
  1. Evaluation
  • Set the config file for test (configs/test_from_city_to_gta.yml):
  • Run:
python3 test.py

to see the results.

  1. Training-whole process
  • Setting the config files.
  • Stage 1:
  • 1-save_feat_source.py: get the './features/full_dataset_objective_vectors.pkl'
python3 save_feat_source.py
  • 2-cluster_anchors_source.py: cluster the './features/full_dataset_objective_vectors.pkl' to './anchors/cluster_centroids_full_10.pkl'
python3 cluster_anchors_source.py
  • 3-select_active_samples.py: select active samples with './anchors/cluster_centroids_full_10.pkl' to 'stage1_cac_list_0.05.txt'
python3 select_active_samples.py
  • 4-train_active_stage1.py: train stage1 model with anchors './anchors/cluster_centroids_full_10.pkl' and active samples 'stage1_cac_list_0.05.txt', get the 'from_gta5_to_cityscapes_on_deeplab101_best_model_stage1.pkl', which is stored in the runs/active_from_gta_to_city_stage1
python3 train_active_stage1.py
  • Stage 2:
  • 1-save_feat_target.py: get the './features/target_full_dataset_objective_vectors.pkl.pkl'
python3 save_feat_target.py
  • 2-cluster_anchors_target.py: cluster the './features/target_full_dataset_objective_vectors.pkl' to './anchors/cluster_centroids_full_target_10.pkl'
python3 cluster_anchors_target.py
  • 3-train_active_stage2.py: train stage2 model with anchors './anchors/cluster_centroids_full_target_10.pkl' and active samples 'stage1_cac_list_0.05.txt', get the 'from_gta5_to_cityscapes_on_deeplab101_best_model_stage2.pkl'
python3 train_active_stage2.py

License

MIT

The code is heavily borrowed from the CAG_UDA (https://github.com/RogerZhangzz/CAG_UDA).

If you use this code and find it usefule, please cite:

@inproceedings{ning2021multi,
  title={Multi-Anchor Active Domain Adaptation for Semantic Segmentation},
  author={Ning, Munan and Lu, Donghuan and Wei, Dong and Bian, Cheng and Yuan, Chenglang and Yu, Shuang and Ma, Kai and Zheng, Yefeng},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9112--9122},
  year={2021}
}

Notes

The anchors are calcuated based on features captured by decoders.

In this paper, we utilize the more powerful decoder in DeeplabV3+, it may cause somewhere unfair. So we strongly recommend the ProDA which utilize origin DeeplabV2 decoder.

Owner
Munan Ning
Munan Ning
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022