Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Related tags

Deep Learningtutorial
Overview

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Jupyter Book Badge

About the book

This is a web book written for a tutorial session of the 22nd International Society for Music Information Retrieval Conference, Nov 8-12, 2021, in an online format. The ISMIR conference is the world’s leading research forum on processing, searching, organising and accessing music-related data.

Motivation

Lower the barrier: As deep learning emerges, music classification research has entered a new phase, and many data-driven approaches have been proposed to solve the problem. However, researchers sometimes use jargon in various ways. Also, some implementation details and evaluation methods are ambiguously described in the papers, blocking access to the information without personal contact. These are tremendous obstacles when new researchers want to dive into this fascinating research area. Through this book, we would like to lower the barrier for newcomers and reduce miscommunication between researchers by sharing the secrets.

Cope with data issue: Another issue that we are facing under the deep learning era is the exhaustion of labeled data. Labeling musical attributes requires strong domain knowledge and a significant amount of time for listening; hence expensive. Because of this, deep learning researchers started actively utilizing large-scale unlabeled data. This book introduces the recent advances in semi- and self-supervised learning that enables music classification models to step further beyond supervised learning.

Narrow the gap: Music classification has been applied to solve real-world problems successfully. However, some important procedures and considerations for real-world applications are rarely discussed as research topics. In this book, based on the various industry experiences of the authors, we try our best to raise the awareness of these questions and provide answers and perspectives. We hope this helps academia and industries harmonize better together.

About the authors

Minz Won is a Ph.D candidate at the Music Technology Group (MTG) of Universitat Pompeu Fabra in Barcelona, Spain. His research focus is music representation learning. Along with his academic career, he has put his knowledge into practice with industry internships at Kakao Corp., Naver Corp., Pandora, Adobe, and he recently joined ByteDance as a research scientist. He contributed to the winning entry in the WWW 2018 Challenge: Learning to Recognize Musical Genre.

Janne Spijkervet graduated from the University of Amsterdam in 2021 with her Master's thesis titled "Contrastive Learning of Musical Representations". The paper with the same title was published in 2020 on self-supervised learning on raw audio in music tagging. She has started at ByteDance as a research scientist (2020 - present), developing generative models for music creation. She is also a songwriter and music producer, and explores the design and use of machine learning technology in her music.

Keunwoo Choi is a senior research scientist at ByteDance, developing machine learning products for music recommendation and discovery. He received a Ph.D degree from Queen Mary University of London (c4dm) in 2018. As a researcher, he also has been working at Spotify (2018 - 2020) and several other music companies as well as open-source projects such as Kapre, librosa, and torchaudio. He also writes some music.

Citing this book

@book{musicclassification:book,
	Author = {Minz Won, Janne Spijkervet, and Keunwoo Choi},
	Month = Nov.,
	Publisher = {https://music-classification.github.io/tutorial},
	Title = {Music Classification: Beyond Supervised Learning, Towards Real-world Applications},
	Year = 2021,
	Url = {https://music-classification.github.io/tutorial}
}
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022