This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Overview

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers

This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers." There are three subdirectories in this repository, the contents of which are described below. This code was tested using PyTorch 1.7.

Synthetic Pairs Matrix

This part of the repository is for running the synthetic pairs matrix experiments in the paper. Here are the commands to run all of the experiments in the paper:

Pairs Matrix 1

python main.py --exp_name pairs_matrix1 --pattern_dir pairs_matrix1 --imgnet_augment

Pairs Matrix 2

python main.py --exp_name pairs_matrix2 --pattern_dir pairs_matrix2 --imgnet_augment

Color Deviation

python main.py --exp_name color_deviation_(your epsilon here) --pattern_dir pairs_matrix1 --hue_perturb blue_circle --hue_perturb_val (your epsilon here) --imgnet_augment

Color Overlap (pattern dirs are already predefined for these. Some overlap values are included, but if you would like to use different ones, you must create them yourself.)

python main.py --exp_name color_overlap_(your overlap here) --pattern_dir color_overlap_(your overlap here) --imgnet_augment

Predictivity

python3 main.py --exp_name predictivity_(your predictivity here) --pattern_dir pairs_matrix1 --pred_drop blue --pred_drop_val (your predictivity here)

When you run one of these experiments, datasets will be created and models trained. Datasets will get created and stored in the directory ./data/exp_name, trained models will get stored in ./models/exp_name, and results will appear in ./results/exp_name. When the experiment is done, there should be a file called master.csv in the directory ./results/exp_name which will contain information including each feature's average preference over the course of the experiment, pixel count, and name. A complete list of commands to generate all data in the paper can be found in the commands.sh file in the pairs_matrix_experiments subdirectory. The training script is adapted from the torchvision training script: https://github.com/pytorch/examples/blob/master/imagenet/main.py.

Texture Bias

Stimuli and helper code is used from the open-sourced code of the paper "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness" (https://github.com/rgeirhos/texture-vs-shape).

To run the experiments from our paper with an ImageNet-trained ResNet-50, you can do the following:

Normal Texture Bias

python main.py

Varying degrees of background interpolation to white (use 0 for completely white, 1 for texture background).

python main.py --bg_interp (your interpolation here)

Resizing

python main.py --bg_interp 0 --size (your fraction of the object size here)

Landscapes

python main.py --bg_interp 0 --landscape

Only full shapes

python main.py --only_complete

Only full shapes masked with masked/interpolated background

python main.py --only_complete --bg_interp (your interpolation here)

A complete list of commands to generate all of the texture bias data from our paper can be found in the commands.sh file in the texture_bias subdirectory.

Excessive Invariance

Running these experiments is a bit more involved. A complete list of commands you must run to reproduce all data and graphs found in the paper can be found in the commands.sh file in the excessive_invariance subdirectory. Comments in the file describe what each step represents.

This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022