PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

Overview

PyTorch implementation of Video Transformer Benchmarks

This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a collections of scalable video transformer benchmarks, and discuss the training recipes of how to train a big video transformer model.

Now, we implement the TimeSformer and ViViT. And we have pre-trained the TimeSformer-B on Kinetics600, but still can't guarantee the performance reported in the paper. However, we find some relevant hyper-parameters which may help us to reach the target performance.

Table of Contents

  1. Difference
  2. TODO
  3. Setup
  4. Usage
  5. Result
  6. Acknowledge
  7. Contribution

Difference

In order to share the basic divided spatial-temporal attention module to different video transformer, we make some changes in the following apart.

1. Position embedding

We split the position embedding from R(nt*h*w×d) mentioned in the ViViT paper into R(nh*w×d) and R(nt×d) to stay the same as TimeSformer.

2. Class token

In order to make clear whether to add the class_token into the module forward computation, we only compute the interaction between class_token and query when the current layer is the last layer (except FFN) of each transformer block.

3. Initialize from the pre-trained model

  • Tokenization: the token embedding filter can be chosen either Conv2D or Conv3D, and the initializing weights of Conv3D filters from Conv2D can be replicated along temporal dimension and averaging them or initialized with zeros along the temporal positions except at the center t/2.
  • Temporal MSA module weights: one can choose to copy the weights from spatial MSA module or initialize all weights with zeros.
  • Initialize from the MAE pre-trained model provided by ZhiLiang, where the class_token that does not appear in the MAE pre-train model is initialized from truncated normal distribution.
  • Initialize from the ViT pre-trained model can be found here.

TODO

  • add more TimeSformer and ViViT variants pre-trained weights.
    • A larger version and other operation types.
  • add linear prob and partial fine-tune.
    • Make available to transfer the pre-trained model to downstream task.
  • add more scalable Video Transformer benchmarks.
    • We will also extend to multi-modality version, e.g Perceiver is coming soon.
  • add more diverse objective functions.
    • Pre-train on larger dataset through the dominated self-supervised methods, e.g Contrastive Learning and MAE.

Setup

pip install -r requirements.txt

Usage

Training

# path to Kinetics600 train set
TRAIN_DATA_PATH='/path/to/Kinetics600/train_list.txt'
# path to root directory
ROOT_DIR='/path/to/work_space'

python model_pretrain.py \
	-lr 0.005 \
	-pretrain 'vit' \
	-epoch 15 \
	-batch_size 8 \
	-num_class 600 \
	-frame_interval 32 \
	-root_dir ROOT_DIR \
	-train_data_path TRAIN_DATA_PATH

The minimal folder structure will look like as belows.

root_dir
├── pretrain_model
│   ├── pretrain_mae_vit_base_mask_0.75_400e.pth
│   ├── vit_base_patch16_224.pth
├── results
│   ├── experiment_tag
│   │   ├── ckpt
│   │   ├── log

Inference

# path to Kinetics600 pre-trained model
PRETRAIN_PATH='/path/to/pre-trained model'
# path to the test video sample
VIDEO_PATH='/path/to/video sample'

python model_inference.py \
	-pretrain PRETRAIN_PATH \
	-video_path VIDEO_PATH \
	-num_frames 8 \
	-frame_interval 32 \

Result

Kinetics-600

1. Model Zoo

name pretrain epochs num frames spatial crop top1_acc top5_acc weight log
TimeSformer-B ImageNet-21K 15e 8 224 78.4 93.6 Google drive or BaiduYun(code: yr4j) log

2. Train Recipe(ablation study)

2.1 Acc

operation top1_acc top5_acc top1_acc (three crop)
base 68.2 87.6 -
+ frame_interval 4 -> 16 (span more time) 72.9(+4.7) 91.0(+3.4) -
+ RandomCrop, flip (overcome overfit) 75.7(+2.8) 92.5(+1.5) -
+ batch size 16 -> 8 (more iterations) 75.8(+0.1) 92.4(-0.1) -
+ frame_interval 16 -> 24 (span more time) 77.7(+1.9) 93.3(+0.9) 78.4
+ frame_interval 24 -> 32 (span more time) 78.4(+0.7) 94.0(+0.7) 79.1

tips: frame_interval and data augment counts for the validation accuracy.


2.2 Time

operation epoch_time
base (start with DDP) 9h+
+ speed up training recipes 1h+
+ switch from get_batch first to sample_Indice first 0.5h
+ batch size 16 -> 8 33.32m
+ num_workers 8 -> 4 35.52m
+ frame_interval 16 -> 24 44.35m

tips: Improve the frame_interval will drop a lot on time performance.

1.speed up training recipes:

  • More GPU device.
  • pin_memory=True.
  • Avoid CPU->GPU Device transfer (such as .item(), .numpy(), .cpu() operations on tensor or log to disk).

2.get_batch first means that we firstly read all frames through the video reader, and then get the target slice of frames, so it largely slow down the data-loading speed.


Acknowledge

this repo is built on top of Pytorch-Lightning, decord and kornia. I also learn many code designs from MMaction2. I thank the authors for releasing their code.

Contribution

I look forward to seeing one can provide some ideas about the repo, please feel free to report it in the issue, or even better, submit a pull request.

And your star is my motivation, thank u~

Owner
Xin Ma
Xin Ma
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022