Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Overview

Complex-Valued Neural Networks (CVNN)

Done by @NEGU93 - J. Agustin Barrachina

Documentation Status PyPI version Anaconda cvnn version DOI

Using this library, the only difference with a Tensorflow code is that you should use cvnn.layers module instead of tf.keras.layers.

This is a library that uses Tensorflow as a back-end to do complex-valued neural networks as CVNNs are barely supported by Tensorflow and not even supported yet for pytorch (reason why I decided to use Tensorflow for this library). To the authors knowledge, this is the first library that actually works with complex data types instead of real value vectors that are interpreted as real and imaginary part.

Update:

  • Since v1.6 (28 July 2020), pytorch now supports complex vectors and complex gradient as BETA. But still have the same issues that Tensorflow has, so no reason to migrate yet.
  • Since v0.2 (25 Jan 2021) complexPyTorch uses complex64 dtype.

Documentation

Please Read the Docs

Instalation Guide:

Using Anaconda

conda install -c negu93 cvnn

Using PIP

Vanilla Version installs all the minimum dependencies.

pip install cvnn

Plot capabilities has the posibility to plot the results obtained with the training with several plot libraries.

pip install cvnn[plotter]

Full Version installs full version with all features

pip install cvnn[full]

Short example

From "outside" everything is the same as when using Tensorflow.

import numpy as np
import tensorflow as tf

# Assume you already have complex data... example numpy arrays of dtype np.complex64
(train_images, train_labels), (test_images, test_labels) = get_dataset()        # to be done by each user

model = get_model()   # Get your model

# Compile as any TensorFlow model
model.compile(optimizer='adam', metrics=['accuracy'],
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.summary()

# Train and evaluate
history = model.fit(train_images, train_labels, epochs=epochs, validation_data=(test_images, test_labels))
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

The main difference is that you will be using cvnn layers instead of Tensorflow layers. There are some options on how to do it as shown here:

Sequential API

import cvnn.layers as complex_layers

def get_model():
    model = tf.keras.models.Sequential()
    model.add(complex_layers.ComplexInput(input_shape=(32, 32, 3)))                     # Always use ComplexInput at the start
    model.add(complex_layers.ComplexConv2D(32, (3, 3), activation='cart_relu'))
    model.add(complex_layers.ComplexAvgPooling2D((2, 2)))
    model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
    model.add(complex_layers.ComplexMaxPooling2D((2, 2)))
    model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
    model.add(complex_layers.ComplexFlatten())
    model.add(complex_layers.ComplexDense(64, activation='cart_relu'))
    model.add(complex_layers.ComplexDense(10, activation='convert_to_real_with_abs'))   
    # An activation that casts to real must be used at the last layer. 
    # The loss function cannot minimize a complex number
    return model

Functional API

import cvnn.layers as complex_layers
def get_model():
    inputs = complex_layers.complex_input(shape=(128, 128, 3))
    c0 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(inputs)
    c1 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(c0)
    c2 = complex_layers.ComplexMaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid')(c1)
    t01 = complex_layers.ComplexConv2DTranspose(5, kernel_size=2, strides=(2, 2), activation='cart_relu')(c2)
    concat01 = tf.keras.layers.concatenate([t01, c1], axis=-1)

    c3 = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(concat01)
    out = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(c3)
    return tf.keras.Model(inputs, out)

About me & Motivation

My personal website

I am a PhD student from Ecole CentraleSupelec with a scholarship from ONERA and the DGA

I am basically working with Complex-Valued Neural Networks for my PhD topic. In the need of making my coding more dynamic I build a library not to have to repeat the same code over and over for little changes and accelerate therefore my coding.

Cite Me

Alway prefer the Zenodo citation.

Next you have a model but beware to change the version and date accordingly.

@software{j_agustin_barrachina_2021_4452131,
  author       = {J Agustin Barrachina},
  title        = {Complex-Valued Neural Networks (CVNN)},
  month        = jan,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v1.0.3},
  doi          = {10.5281/zenodo.4452131},
  url          = {https://doi.org/10.5281/zenodo.4452131}
}

Issues

For any issues please report them in here

This library is tested using pytest.

pytest logo

Owner
youceF
youceF
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022