Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Overview

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020)

Overview

This repo is for the paper "Learning from Synthetic Shadows for Shadow Detection and Removal". We present SynShadow, a novel large-scale synthetic shadow/shadow-free/matte image triplets dataset and pipeline to synthesize it. We further show how to use SynShadow for robust and efficient shadow detection and removal.

In this repo, we provide

  • SynShadow dataset: ./datasets
  • SP+M implementation: ./src
  • Trained models and results: below

If you find this code or dataset useful for your research, please cite our paper:

@article{inoue_2020_tcsvt,
  author = {Inoue, Naoto and Yamasaki, Toshihiko},
  title = {Learning from Synthetic Shadows for Shadow Detection and Removal},
  journal = {IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)},
  volume={XX},
  number={XX},
  pages={XXXX-XXXX},
  year={2020},
  publisher={IEEE}
}

Trained Models and Results

We provide the models for shadow detection and removal for convenience. Downloaded models should be placed under ./checkpoints.

Shadow Detection

ALl the results are in 480x640. BER is reported for 480x640 images. Below are results evaluated on ISTD test set. DSDNet++ is a modified variant of DSDNet.

Model Train BER
DSDNet++ SynShadow 2.74 results / weights
DSDNet++ SynShadow->ISTD 1.09 results / weights
BDRAR SynShadow 2.74 results / weights
BDRAR SynShadow->ISTD 1.10 results / weights

Shadow Removal

ALl the results are in 480x640. For the pre-trained weights, we only provide SP+M weights, since this repository has full implementation of it. RMSE is reported for 480x640 images.

Model: SP+M

Train Test RMSE
SynShadow ISTD+ 4.9 results / weights / precomputed_mask
SynShadow->ISTD+ ISTD+ 4.0 results / weights / precomputed_mask
SynShadow SRD+ 5.7 results / weights / precomputed_mask
SynShadow->SRD+ SRD+ 5.2 results / weights / precomputed_mask
SynShadow USR - results / weights / precomputed_mask

Model: DHAN

Train Test RMSE
SynShadow->ISTD+ ISTD+ 4.6 results
SynShadow->SRD+ SRD+ 6.6 results
SynShadow USR - results

Note: we have accidentially removed some files and cannot provide some results.

Owner
Naoto Inoue
Ph.D student in Computer Vision and Computer Graphics at Aizawa-Yamasaki-Matsui Labratory, UTokyo
Naoto Inoue
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022