Naszilla is a Python library for neural architecture search (NAS)

Overview

License

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your own NAS algorithm, and then easily compare it with eleven algorithms across three benchmarks.

This repository contains the official code for the following three papers:

Paper README Blog Post
A Study on Encodings for Neural Architecture Search encodings.md Blog Post
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search bananas.md Blog Post
Exploring the Loss Landscape in Neural Architecture Search local_search.md Blog Post

Installation

Clone this repository and install its requirements (which includes nasbench, nas-bench-201, and nasbench301). It may take a few minutes.

git clone https://github.com/naszilla/naszilla
cd naszilla
cat requirements.txt | xargs -n 1 -L 1 pip install
pip install -e .

You might need to replace line 32 of src/nasbench301/surrogate_models/surrogate_models.py with a new path to the configspace file:

self.config_loader = utils.ConfigLoader(os.path.expanduser('~/naszilla/src/nasbench301/configspace.json'))

Next, download the nas benchmark datasets (either with the terminal commands below, or from their respective websites (nasbench, nas-bench-201, and nasbench301). The versions recommended for use with naszilla are nasbench_only108.tfrecord, NAS-Bench-201-v1_0-e61699.pth, and nasbench301_models_v0.9.zip. If you use a different version, you might need to edit some of the naszilla code.

# these files are 0.5GB, 2.1GB, and 1.6GB, respectively
wget https://storage.googleapis.com/nasbench/nasbench_only108.tfrecord
wget https://ndownloader.figshare.com/files/25506206?private_link=7d47bf57803227af4909 -O NAS-Bench-201-v1_0-e61699.pth
wget https://ndownloader.figshare.com/files/24693026 -O nasbench301_models_v0.9.zip
unzip nasbench301_models_v0.9.zip

Place the three downloaded benchmark data files in ~/nas_benchmark_datasets (or choose another directory and edit line 15 of naszilla/nas_benchmarks.py accordingly).

Now you have successfully installed all of the requirements to run eleven NAS algorithms on three benchmark search spaces!

Test Installation

You can test the installation by running these commands:

cd naszilla
python naszilla/run_experiments.py --search_space nasbench_101 --algo_params all_algos --queries 30 --trials 1
python naszilla/run_experiments.py --search_space nasbench_201 --algo_params all_algos --queries 30 --trials 1
python naszilla/run_experiments.py --search_space nasbench_301 --algo_params all_algos --queries 30 --trials 1

These experiments should finish running within a few minutes.

Run NAS experiments on NASBench-101/201/301 search spaces

cd naszilla
python naszilla/run_experiments.py --search_space nasbench_201 --dataset cifar100 --queries 100 --trials 100

This will test several NAS algorithms against each other on the NASBench-201 search space. Note that NASBench-201 allows you to specify one of three datasets: cifar10, cifar100, or imagenet. To customize your experiment, open naszilla/params.py. Here, you can change the algorithms and their hyperparameters. For details on running specific methods, see these docs.

Contributions

Contributions are welcome!

Reproducibility

If you have any questions about reproducing an experiment, please open an issue or email [email protected].

Citation

Please cite our papers if you use code from this repo:

@inproceedings{white2020study,
  title={A Study on Encodings for Neural Architecture Search},
  author={White, Colin and Neiswanger, Willie and Nolen, Sam and Savani, Yash},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}

@inproceedings{white2021bananas,
  title={BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search},
  author={White, Colin and Neiswanger, Willie and Savani, Yash},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2021}
}

@inproceedings{white2021exploring,
  title={Exploring the Loss Landscape in Neural Architecture Search},
  author={White, Colin and Nolen, Sam and Savani, Yash},
  booktitle={Uncertainty in Artificial Intelligence},
  organization={PMLR},
  year={2021}
}

Contents

This repo contains encodings for neural architecture search, a variety of NAS methods (including BANANAS, a neural predictor Bayesian optimization method, and local search for NAS), and an easy interface for using multiple NAS benchmarks.

Encodings:

encodings

BANANAS:

adj_train adj_test path_train path_test

Local search:

local_search

YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
Atif Hassan 103 Dec 14, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023