TLDR: Twin Learning for Dimensionality Reduction

Overview

TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self-supervised learning losses.

Inspired by manifold learning, TLDR uses nearest neighbors as a way to build pairs from a training set and a redundancy reduction loss to learn an encoder that produces representations invariant across such pairs. Similar to other neighborhood embeddings, TLDR effectively and unsupervisedly learns low-dimensional spaces where local neighborhoods of the input space are preserved; unlike other manifold learning methods, it simply consists of an offline nearest neighbor computation step and a straightforward learning process that does not require mining negative samples to contrast, eigendecompositions, or cumbersome optimization solvers.

More details and evaluation can be found in our paper.

diagram
Overview of TLDR: Given a set of feature vectors in a generic input space, we use nearest neighbors to define a set of feature pairs whose proximity we want to preserve. We then learn a dimensionality-reduction function (theencoder) by encouraging neighbors in the input space to havesimilar representations. We learn it jointly with an auxiliary projector that produces high dimensional representations, where we compute the Barlow Twins loss over the (d′ × d′) cross-correlation matrix averaged over the batch.

Contents:

Installing the TLDR library

Requirements:

  • Python 3.6 or greater
  • PyTorch 1.8 or greater
  • numpy
  • FAISS
  • rich

In order to install the TLDR library, one should first make sure that FAISS and Pytorch are installed. We recommend using a new conda environment:

conda create --name ENV_NAME python=3.6.8
conda activate ENV_NAME
conda install -c pytorch faiss-gpu cudatoolkit=10.2
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

After ensuring that you have installed both FAISS and numpy, you can install TLDR by using the two commands below:

git clone [email protected]:naver/tldr.git
python3 -m pip install -e tldr

Using the TLDR library

The TLDR library can be used to learn dimensionality reduction models using an API and functionality that mimics similar methods in the scikit-learn library, i.e. you can learn a dimensionality reduction on your training data using fit() and you can project new data using transform().

To illustrate the different functionalities we present a dummy example on randomly generated data. Let's import the library and generate some random training data (we will use 100K training examples with a dimensionality of 2048), i.e.:

import numpy as np
from tldr import TLDR

# Generate random data
X = np.random.rand(100000, 2048)  # replace with training (N x D) array

Instantiating a TLDR model

When instantiating a TLDR model one has to specify the output dimension (n_components), the number of nearest neighbors to use (n_neighbors) as well as the encoder and projector architectures that are specified as strings.

For this example we will learn a dimensionality reduction to 32 components, we will use the 10 nearest neighbors to sample positive pairs, and we will use a linear encoder and a multi-layer perceptron with one hidden layer of 2048 dimensions as a projector:

tldr = TLDR(n_components=32, n_neighbors=10, encoder='linear', projector='mlp-1-2048', device='cuda', verbose=2)

For a more detailed list of optional arguments please refer to the function documentation below; architecture specification string formatting guide is described in this section below.

Learning and applying the TLDR model

We learn the parameters of the dimensionality reduction model by using the fit() method:

tldr.fit(X, epochs=100, batch_size=1024, output_folder='data/', print_every=50)

By default, fit() first collects the k nearest neighbors for each training data point using FAISS and then optimizes the Barlow Twin loss using the batch size and number of epochs provided. Note that, apart from the dimensionality reduction function (the encoder), a projector function that is part of the training process is also learned (see also the Figure above); the projector is by default discarded after training.

Once the model has been trained we can use transform() to project the training data to the new learned space:

Z = tldr.transform(X, l2_norm=True)  # Returns (N x n_components) matrix

The optional l2_norm=True argument of transform() further applies L2 normalization to all features after projection.

Again, we refer the user to the functions' documentation below for argument details.

Saving/loading the model

The TLDR model and the array of nearest neighbors per training datapoint can be saved using the save() and save_knn() functions, repsectively:

tldr.save("data/inference_model.pth")
tldr.save_knn("data/knn.npy")

Note that by default the projector weights will not be saved. To also save the projector (e.g. for subsequent fine-tuning of the model) one must set the retain_projector=True argument when calling fit().

One can use the load() method to load a pre-trained model from disk. Using the init=True argument when loading also loads the hyper-parameters of the model:

X = np.random.rand(5000, 2048)
tldr = TLDR()
tldr.load("data/inference_model.pth", init=True)  # Loads both model parameters and weights
Z = tldr.transform(X, l2_norm=True)  # Returns (N x n_components) matrix

You can find this full example in scripts/dummy_example.py.

Documentation

TLDR(n_components, encoder, projector, n_neighbors=5, device='cpu', pin_memory=False)

Description of selected arguments (see code for full list):

  • n_components: output dimension
  • encoder: encoder network architecture specification string--see formatting guide (Default: 'linear').
  • projector: projector network architecture specification string--see formatting guide (Default: 'mlp-1-2048').
  • n_neighbors: number of nearest neighbors used to sample training pairs (Default: 5).
  • device: selects the device ['cpu', 'cuda'] (Default: cpu).
  • pin_memory: pin all data to the memory of the device (Default: False).
  • random_state: sets the random seed (Default: None).
  • knn_approximation: Amount of approximation to use during the knn computation; accepted values are [None, "low", "medium" and "high"] (Default: None). No approximation will calculate exact neighbors while setting the approximation to either low, medium or high will use product quantization and create the FAISS index using the index_factory with an "IVF1,PQ[X]" string, where X={32,16,8} for {"low","med","high"}. The PQ parameters are learned using 10% of the training data.
from tldr import TLDR

tlrd = TLDR(n_components=128, encoder='linear', projector='mlp-2-2048', n_neighbors=3, device='cuda')

fit(X, epochs=100, batch_size=1024, knn_graph=None, output_folder=None, snapshot_freq=None)

Parameters:

  • X: NxD training data array containing N training samples of dimension D.
  • epochs: number of training epochs (Default: 100).
  • batch_size: size of the training mini batch (Default: 1024).
  • knn_graph: Nxn_neighbors array containing the indices of nearest neighbors of each sample; if None it will be computed (Default: None).
  • output_folder: folder where the final model (and also the snapshots if snapshot_freq > 1) will be saved (Default: None).
  • snapshot_freq: number of epochs to save a new snapshot (Default: None).
  • print_every: prints useful training information every given number of steps (Default: 0).
  • retain_projector: flag so that the projector parameters are retained after training (Default: False).
from tldr import TLDR
import numpy as np

tldr = TLDR(n_components=32, encoder='linear', projector='mlp-2-2048')
X = np.random.rand(10000, 2048)
tldr.fit(X, epochs=50, batch_size=512, output_folder='data/', snapshot_freq=5, print_every=50)

transform(X, l2_norm=False)

Parameters:

  • X: NxD array containing N samples of dimension D.
  • l2_norm: l2 normalizes the features after projection. Default False.

Output:

  • Z: Nxn_components array
tldr.fit(X, epochs=100)
Z = tldr.transform(X, l2_norm=True)

save(path) and load(path)

  • save() saves to disk both model parameters and weights.
  • load() loads the weights of the model. If init=True it initializes the model with the hyper-parameters found in the file.
tldr = TLDR(n_components=32, encoder='linear', projector='mlp-2-2048')
tldr.fit(X, epochs=50, batch_size=512)
tldr.save("data/model.pth")  # Saves weights and params

tldr = TLDR()
tldr.load("data/model.pth", init=True)  # Initialize model with params in file and loads the weights

remove_projector()

Removes the projector head from the model. Useful for reducing the size of the model before saving it to disk. Note that you'll need the projection head if you want to resume training.

compute_knn(), save_knn() and load_knn()

tldr = TLDR(n_components=128, encoder='linear', projector='mlp-2-2048')
tldr.compute_knn(X)
tldr.fit(X, epochs=100)
tldr.save_knn("knn.npy")
tldr = TLDR(n_components=128, encoder='linear', projector='mlp-2-2048')
tldr.load_knn("knn.npy")
tldr.fit(X, epochs=100)

Architecture Specification Strings

You can specify the network configuration using a string with the following format:

'[NETWORK_TYPE]-[NUM_HIDDEN_LAYERS]-[NUM_DIMENSIONS_PER_LAYER]'

  • NETWORK_TYPE: three network types currently available:
    • linear: a linear function parametrized by a weight matrix W of size input_dim X num_components.
    • flinear: a factorized linear model in a sequence of linear layers, each composed of a linear layer followed by a batch normalization layer.
    • mlp: a multi-layer perceptron (MLP) with batch normalization and rectified linear units (ReLUs) as non-linearities.
  • NUM_HIDDEN_LAYERS: selects the number of hidden (ie. intermediate) layers for the factorized linear model and the MLP
  • NUM_DIMENSIONS_PER_LAYER: selects the dimensionality of the hidden layers.

For example, linear will use a single linear layer; flinear-1-512 will use a factorized linear layer with one hidden layer of 512 dimensions; and mlp-2-4096 will select a MLP composed of two hidden layers of 4096 dimensions each.

Citation

Please consider citing the following paper in your publications if this helps your research.

@article{KLAL21,
 title = {TLDR: Twin Learning for Dimensionality Reduction},
 author = {Kalantidis, Y. and Lassance, C. and Almaz\'an, J. and Larlus, D.}
 journal = {arXiv:2110.09455},
 year = {2021}
}

Contributors

This code has been developed by Jon Almazan, Carlos Lassance, Yannis Kalantidis and Diane Larlus at NAVER Labs Europe.

Owner
NAVER
NAVER
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022