Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Overview

Awesome AI-ML-DL Awesome License: CC BY-SA 4.0

Better NLP: Better NLP

NLP Java: NLP Java | NLP Clojure: NLP Clojure | NLP Kotlin: NLP Kotlin | NLP Scala: NLP Scala |
NLP using DL4J (cuda) NLP using DL4J (cuda)

Tribuo: Tribuo | DeepNetts: DeepNetts | Dataiku DSS: Dataiku DSS | Grakn: Grakn | Jupyter-Java: Jupyter-Java |
MLPMNist using DL4J: MLPMNist using DL4J | Zeppelin: Zeppelin


Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

This repo is dedicated to engineers, developers, data scientists and all other professions that take interest in AI, ML, DL and related sciences. To make learning interesting and to create a place to easily find all the necessary material. Please contribute, watch, star, fork and share the repo with others in your community.

Watching the repo will keep you posted of all the changes (commits) that go into the repo.

Also, please SPONSOR us, find out how-to!

Contributing

Contributions are very welcome, please share back with the wider community (and get credited for it)!

Please have a look at the CONTRIBUTING guidelines, also have a read about our licensing policy.

Sponsoring

With GitHub's new project sponsor program you can now sponsor projects like this, see how.

Comments
  • Wolfram Neural Net Repository

    Wolfram Neural Net Repository

    Probably a useful link to add to this repo (under Mathematica / Wolfram Language):

    https://resources.wolframcloud.com/NeuralNetRepository/

    The Wolfram Neural Net Repository is a public resource that hosts an expanding collection of trained and untrained neural network models, suitable for immediate evaluation, training, visualization, transfer learning and more.

    enhancement Hacktoberfest2019 
    opened by arnoudbuzing 7
  • Why to add

    Why to add "Tutorial" in names of R articles added?

    Articles are self explanatory from their headings. I feel adding tutorial specifically under R subsection is somewhat should not be there.

    Just like other good articles by great authors, their heading should be kept unchanged.

    opened by dA505819 5
  • Broken link

    Broken link

    Reached this awesome list from the : akullpp/awesome-java .

    https://github.com/neomatrix369/awesome-ai-ml-dl/blob/master/details/java-jvm.md#java

    Using Java for Artificial Intelligence (Tweet)

    This link is broken.

    Thank you!

    opened by tjj225 4
  • Added Computer Vision topic under Julia, Python and R

    Added Computer Vision topic under Julia, Python and R

    Purpose : To add materials of Computer Vision field into the repository as it had none.

    Contents : Motivation (intro to computer vision), Digital image processing, Opencv and its tutorials, Courses from other organisations, Conferences to follow and some famous computer vision blogs.

    @neomatrix369 please check the pull request. Waiting for your feedback on it.

    enhancement Hacktoberfest2019 
    opened by jerryfrancis-97 3
  • Need for adding Computer Vision topic under Julia, Python and R

    Need for adding Computer Vision topic under Julia, Python and R

    Computer vision topic should focus on the basics of image processing , different filters used, and will then move onto CNNs and deep learning methods of computer vision.

    enhancement Hacktoberfest2019 
    opened by jerryfrancis-97 3
  • Broken link for Object tracking under Image processing heading

    Broken link for Object tracking under Image processing heading

    https://github.com/virgili0/Virgilio/blob/master/serving/inferno/computer-vision/object-tracking/object-tracking.ipynb is giving error no. 404, under heading Image Processing under Computer Vision in /details/julia-python-and-r.md

    deadlinks 
    opened by therc01 2
  • Add Flyte

    Add Flyte

    Signed-off-by: Samhita Alla [email protected]

    Flyte is a workflow automation platform for complex, mission-critical data and ML processes at scale. A detailed overview of the features can be seen in the GitHub repo.

    enhancement 
    opened by samhita-alla 2
  • added measures.md #hacktoberfest

    added measures.md #hacktoberfest

    This PR is an extension to introduction to code-mixing and code-switching!

    • added a few important metrics and their descriptions useful for modeling code-mixing corpus
    • included useful resources which described the metrics in detail
    enhancement hacktoberfest hacktoberfest-accepted 
    opened by UmaGunturi 2
  • Add Automated Testing for Broken Links in Markdown Files

    Add Automated Testing for Broken Links in Markdown Files

    Requesting a new issue to be assigned to me:

    Add automated testing to ensure all links in markdown files are not broken, and alert when there are issues with links.

    @neomatrix369 - let me know if you want me to work on this issue or if it's not helpful for your project! I would love to contribute as part of hacktoberfest.

    enhancement deadlinks automation 
    opened by MattRudy 2
  • Find and fix broken/dead links

    Find and fix broken/dead links

    As see from #53 we can have broken/dead links, links that once worked can be unavailable for reasons outside the control of this project/repo!

    Hence I have decided to manually scan (for now) the repo from time to time for such links and fix them - if there is one. Here are the steps to take:

    New broken/dead links

    • find missing links using, markdown-link-check (see https://www.npmjs.com/package/markdown-link-check to find out how to install and use it)
    • once installed, use the below command in the root of the project:
    $ ls **/*.md | xargs -n 1 markdown-link-check --quiet
    
    ### This recursively finds all markdown files in the repo, 
    ### scans them and only reports those files which have 
    ### broken/dead links in them. 
    
    • try to fix the broken/dead links by hand
    • we are only looking for HTTP response code of 404, any other response codes can be ignored
    • if a fix cannot be found, best mark the link with a '[deadlink]' marker
    • in certain cases it's a good idea to leave the old link with the '[deadlink]' marker next to it even though we have found a new working one

    Existing broken/dead links across the repo

    Existing dead/broken links are marked with the '[deadlink]' marker.

    As part of this issue, fixing these links is also helpful - although if they are left in there it's cause their fix wasn't immediately available or found on searching on the relevant sources.

    Eventually, we can automate the task of finding such links via a GitHub action during GitHub events like commit, push or pull request creation.

    good first issue hacktoberfest 
    opened by neomatrix369 4
  • Add more features to the BetterNLP library

    Add more features to the BetterNLP library

    On the back of this discussion, @shahanesanket and I will take this further https://github.com/pandas-profiling/pandas-profiling/issues/278, some high-level ideas:

    • Missing value analysis
    • Text length analysis
      • 2.1 min, max, average, quantiles
      • 2.2 freq words, infrequent words (can include the deepmoji project's tokenizer. it's very robust)
      • 2.2 word cloud. (if it isn't a far stretched goal)

    @shahanesanket let's continue with our discussions here.

    enhancement hacktoberfest discussion 
    opened by neomatrix369 3
Owner
mani
3X @Kaggle Expert @Java champion, Polyglot, Software Crafter, performance, @graalvm, AI, ML, DL, NLP, Data Science, Developer communities, speaker, blogger
mani
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023