Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Overview

EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Audio samples are available on our demo page.

Abstract

We present EdiTTS, an off-the-shelf speech editing methodology based on score-based generative modeling for text-to-speech synthesis. EdiTTS allows for targeted, granular editing of audio, both in terms of content and pitch, without the need for any additional training, task-specific optimization, or architectural modifications to the score-based model backbone. Specifically, we apply coarse yet deliberate perturbations in the Gaussian prior space to induce desired behavior from the diffusion model, while applying masks and softening kernels to ensure that iterative edits are applied only to the target region. Listening tests demonstrate that EdiTTS is capable of reliably generating natural-sounding audio that satisfies user-imposed requirements.

Citation

Please cite this work as follows.

@misc{tae&kim2021editts,
      title={EdiTTS: Score-based Editing for Controllable Text-to-Speech}, 
      author={Jaesung Tae and Hyeongju Kim and Taesu Kim},
      year={2021}
}

Setup

  1. Create a Python virtual environment (venv or conda) and install package requirements as specified in requirements.txt.

    python -m venv venv
    source venv/bin/activate
    pip install -U pip
    pip install -r requirements.txt
  2. Build the monotonic alignment module.

    cd model/monotonic_align
    python setup.py build_ext --inplace

For more information, refer to the official repository of Grad-TTS.

Checkpoints

The following checkpoints are already included as part of this repository, under checkpts.

Pitch Shifting

  1. Prepare an input file containing samples for speech generation. Mark the segment to be edited via a vertical bar separator, |. For instance, a single sample might look like

    In | the face of impediments confessedly discouraging |

    We provide a sample input file in resources/filelists/edit_pitch_example.txt.

  2. To run inference, type

    CUDA_VISIBLE_DEVICES=0 python edit_pitch.py \
        -f resources/filelists/edit_pitch_example.txt \
        -c checkpts/grad-tts-old.pt -t 1000 \
        -s out/pitch/wavs

    Adjust CUDA_VISIBLE_DEVICES as appropriate.

Content Replacement

  1. Prepare an input file containing pairs of sentences. Concatenate each pair with # and mark the parts to be replaced with a vertical bar separator. For instance, a single pair might look like

    Three others subsequently | identified | Oswald from a photograph. #Three others subsequently | recognized | Oswald from a photograph.

    We provide a sample input file in resources/filelists/edit_content_example.txt.

  2. To run inference, type

    CUDA_VISIBLE_DEVICES=0 python edit_content.py \
        -f resources/filelists/edit_content_example.txt \
        -c checkpts/grad-tts-old.pt -t 1000 \
        -s out/content/wavs

References

License

Released under the modified GNU General Public License.

Owner
Neosapience
Neosapience, an artificial being enabled by artificial intelligence, will soon be everywhere in our daily lives.
Neosapience
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022