Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

Overview

CLIP-Guided-Diffusion

Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

Original colab notebooks by Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings):

  • Original 256x256 notebook: Open In Colab

It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion)

  • Original 512x512 notebook: Open In Colab

It uses a 512x512 unconditional ImageNet diffusion model fine-tuned from OpenAI's 512x512 class-conditional ImageNet diffusion model (https://github.com/openai/guided-diffusion)

Together with CLIP (https://github.com/openai/CLIP), they connect text prompts with images.

Either the 256 or 512 model can be used here (by setting --output_size to either 256 or 512)

Some example images:

"A woman standing in a park":

"An alien landscape":

"A painting of a man":

*images enhanced with Real-ESRGAN

You may also be interested in VQGAN-CLIP

Environment

  • Ubuntu 20.04 (Windows untested but should work)
  • Anaconda
  • Nvidia RTX 3090

Typical VRAM requirments:

  • 256 defaults: 10 GB
  • 512 defaults: 18 GB

Set up

This example uses Anaconda to manage virtual Python environments.

Create a new virtual Python environment for CLIP-Guided-Diffusion:

conda create --name cgd python=3.9
conda activate cgd

Download and change directory:

git clone https://github.com/nerdyrodent/CLIP-Guided-Diffusion.git
cd CLIP-Guided-Diffusion

Run the setup file:

./setup.sh

Or if you want to run the commands manually:

# Install dependencies

pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
git clone https://github.com/openai/CLIP
git clone https://github.com/crowsonkb/guided-diffusion
pip install -e ./CLIP
pip install -e ./guided-diffusion
pip install lpips matplotlib

# Download the diffusion models

curl -OL --http1.1 'https://the-eye.eu/public/AI/models/512x512_diffusion_unconditional_ImageNet/512x512_diffusion_uncond_finetune_008100.pt'
curl -OL 'https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt'

Run

The simplest way to run is just to pass in your text prompt. For example:

python generate_diffuse.py -p "A painting of an apple"

Multiple prompts

Text and image prompts can be split using the pipe symbol in order to allow multiple prompts. You can also use a colon followed by a number to set a weight for that prompt. For example:

python generate_diffuse.py -p "A painting of an apple:1.5|a surreal painting of a weird apple:0.5"

Other options

There are a variety of other options to play with. Use help to display them:

python generate_diffuse.py -h
usage: generate_diffuse.py [-h] [-p PROMPTS] [-ip IMAGE_PROMPTS] [-ii INIT_IMAGE]
[-st SKIP_TIMESTEPS] [-is INIT_SCALE] [-m CLIP_MODEL] [-t TIMESTEPS]
[-ds DIFFUSION_STEPS] [-se SAVE_EVERY] [-bs BATCH_SIZE] [-nb N_BATCHES] [-cuts CUTN]
[-cutb CUTN_BATCHES] [-cutp CUT_POW] [-cgs CLIP_GUIDANCE_SCALE]
[-tvs TV_SCALE] [-rgs RANGE_SCALE] [-os IMAGE_SIZE] [-s SEED] [-o OUTPUT] [-nfp] [-pl]

init_image

  • 'skip_timesteps' needs to be between approx. 200 and 500 when using an init image.
  • 'init_scale' enhances the effect of the init image, a good value is 1000.

timesteps

The number of timesteps, or one of ddim25, ddim50, ddim150, ddim250, ddim500, ddim1000. Must go into diffusion_steps.

image guidance

  • 'clip_guidance_scale' Controls how much the image should look like the prompt.
  • 'tv_scale' Controls the smoothness of the final output.
  • 'range_scale' Controls how far out of range RGB values are allowed to be.

Examples using a number of options:

python generate_diffuse.py -p "An amazing fractal" -os=256 -cgs=1000 -tvs=50 -rgs=50 -cuts=16 -cutb=4 -t=200 -se=200 -m=ViT-B/32 -o=my_fractal.png

python generate_diffuse.py -p "An impressionist painting of a cat:1.75|trending on artstation:0.25" -cgs=500 -tvs=55 -rgs=50 -cuts=16 -cutb=2 -t=100 -ds=2000 -m=ViT-B/32 -pl -o=cat_100.png

(Funny looking cat, but hey!)

Other repos

You may also be interested in https://github.com/afiaka87/clip-guided-diffusion

For upscaling images, try https://github.com/xinntao/Real-ESRGAN

Citations

@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
Owner
Nerdy Rodent
Just a nerdy rodent. I do arty stuff with computers.
Nerdy Rodent
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022