An NUS timetable generator which uses a genetic algorithm to optimise timetables to suit the needs of NUS students.

Overview

Where Got Time(table)?

A timetable optimiser for NUS which uses an evolutionary algorithm to "breed" a timetable suited to your needs.



Try it out here!

Inspiration

Planning the best fit timetable to suit our needs can be an absolute nightmare. Different sets of modules can result in a seemingly limitless combinations of timetable. Comparing and choosing the best timetable can take hours or even days. The struggle is real

Having chanced upon an article on genetic algorithm, we thought that this would be the best approach to tackling an optimization problem involving timetabling/scheduling. This project aims to provide the most optimized timetable given a set of pre-defined constraints.

What It Does

Users can input the following:

  • Modules codes for the particular semester
  • Adjustable start and end time
  • Select free days
  • Maximize lunch timings
  • Determine minimum hours of break between classes

Based on user inputs, the most optimized timetable is generated.





Why It Works

A Genetic Algorithm mimics the process of natural selection and evolution by combining the "elite" timetables to form the "next generation" of timetables.

The evolutionary process:

  1. Extracting, cleaning and generating our own data structure from NUSMods API
  2. Initialise the first generation which includes a population of timetables
  3. Grading each timetable with a fitness score
  4. Cross-over fittest "parents" to generate 2 "child" timetables with mutations
  5. Assign these timetables to the next generation
  6. Repeat this process until the fitness score across a generation converges
  7. If the soft and hard constraints were not met after reaching the generation limit, the most optimised timetable is returned to the user

How We Built It

Our main algorithm was written with Python. It utilizes NUSMods API to fetch the relevant module data. Some filtering and cleaning up of the data grants us a workable data structure. Implementation of the genetic algorithm returns a link that is sent to the web page which generates an image for the user.

Firstly, we generate a population of timetables. Using a scoring algorithm, we rate the fitness of each timetable. Timetables with a better fitness score gets to produce the next generation of timetables through cross-overs and mutation.

We repeat this process until the average fitness score of the entire generation converges to within a tolerance range. The fittest timetable from the final generation is returned to the user.

Challenges We Ran Into

Managing large data structures comes with confusing errors that are hard to pinpoint. NUS offers more than 6000 modules, some classes are fixed while others are variable. This results in multiple varying data structures for different modules. As such, our code needs to be robust enough to handle the unique data structures. Integration of front and backend code was much harder than expected.

Accomplishments We're Proud Of

We are proud to have come up with a minimum viable product.

What We Learned

As this is our first group project, we learnt how to work on Git Flow, how to push and pull information via Git and version control. One of us even deleted a whole file and had to rewrite from scratch We also learnt how to approach optimization problems and how to use the NUSMods API for parsing data into our program.

What's Next For Where Got Time(table)?

Improve the UI/UX of the landing page to facilitate better user experience. Allow more user constraints such as "Minimal Time Spent in School". We will further fine-tune the program which could possibly be used as an extension for the official NUSMods. A possible feature that can be added includes a GIF of the user's timetable evolving across generations from start to finish.

Try It Out

Where Got Time(table)?

Credits/Reference

Using Genetic Algorithm to Schedule Timetables

Owner
Nicholas Lee
Student
Nicholas Lee
This is an implementation of the QuickHull algorithm in Python. I

QuickHull This is an implementation of the QuickHull algorithm in Python. It randomly generates a set of points and finds the convex hull of this set

Anant Joshi 4 Dec 04, 2022
:computer: Data Structures and Algorithms in Python

Algorithms in Python Implementations of a few algorithms and datastructures for fun and profit! Completed Karatsuba Multiplication Basic Sorting Rabin

Prakhar Srivastav 2.9k Jan 01, 2023
Better control of your asyncio tasks

quattro: task control for asyncio quattro is an Apache 2 licensed library, written in Python, for task control in asyncio applications. quattro is inf

Tin Tvrtković 37 Dec 28, 2022
How on earth can I ever think of a solution like that in an interview?!

fuck-coding-interviews This repository is created by an awkward programmer who always struggles with coding problems on LeetCode, even with some Easy

Vinta Chen 613 Jan 08, 2023
Dynamic Programming-Join Optimization Algorithm

DP-JOA Join optimization is the process of optimizing the joining, or combining, of two or more tables in a database. Here is a simple join optimizati

Haoze Zhou 3 Feb 03, 2022
TikTok X-Gorgon & X-Khronos Generation Algorithm

TikTok X-Gorgon & X-Khronos Generation Algorithm X-Gorgon and X-Khronos headers are required to call tiktok api. I will provide you API as rental or s

TikTokMate 31 Dec 01, 2022
frePPLe - open source supply chain planning

frePPLe Open source supply chain planning FrePPLe is an easy-to-use and easy-to-implement open source advanced planning and scheduling tool for manufa

frePPLe 385 Jan 06, 2023
Using A * search algorithm and GBFS search algorithm to solve the Romanian problem

Romanian-problem-using-Astar-and-GBFS Using A * search algorithm and GBFS search algorithm to solve the Romanian problem Romanian problem: The agent i

Mahdi Hassanzadeh 6 Nov 22, 2022
A lightweight, object-oriented finite state machine implementation in Python with many extensions

transitions A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+. Installa

4.7k Jan 01, 2023
Python Sorted Container Types: Sorted List, Sorted Dict, and Sorted Set

Python Sorted Containers Sorted Containers is an Apache2 licensed sorted collections library, written in pure-Python, and fast as C-extensions. Python

Grant Jenks 2.8k Jan 04, 2023
This repository is an individual project made at BME with the topic of self-driving car simulator and control algorithm.

BME individual project - NEAT based self-driving car This repository is an individual project made at BME with the topic of self-driving car simulator

NGO ANH TUAN 1 Dec 13, 2021
Official implementation of "Path Planning using Neural A* Search" (ICML-21)

Path Planning using Neural A* Search (ICML 2021) This is a repository for the following paper: Ryo Yonetani*, Tatsunori Taniai*, Mohammadamin Barekata

OMRON SINIC X 82 Jan 07, 2023
A Python description of the Kinematic Bicycle Model with an animated example.

Kinematic Bicycle Model Abstract A python library for the Kinematic Bicycle model. The Kinematic Bicycle is a compromise between the non-linear and li

Winston H. 36 Dec 23, 2022
FingerPy is a algorithm to measure, analyse and monitor heart-beat using only a video of the user's finger on a mobile cellphone camera.

FingerPy is a algorithm using python, scipy and fft to measure, analyse and monitor heart-beat using only a video of the user's finger on a m

Thiago S. Brasil 37 Oct 21, 2022
This is the code repository for 40 Algorithms Every Programmer Should Know , published by Packt.

40 Algorithms Every Programmer Should Know, published by Packt

Packt 721 Jan 02, 2023
PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks.

PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks. It is developed by the Multi-Agent Artificial Intel

21 Dec 20, 2022
Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.

norm-tol-int Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python. Methods The

Jed Ludlow 1 Jan 06, 2022
Cormen-Lib - An academic tool for data structures and algorithms courses

The Cormen-lib module is an insular data structures and algorithms library based on the Thomas H. Cormen's Introduction to Algorithms Third Edition. This library was made specifically for administeri

Cormen Lib 12 Aug 18, 2022
Implementation of core NuPIC algorithms in C++

NuPIC Core This repository contains the C++ source code for the Numenta Platform for Intelligent Computing (NuPIC)

Numenta 270 Nov 19, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

A Python Package for Portfolio Optimization using the Critical Line Algorithm

19 Oct 11, 2022