The official homepage of the COCO-Stuff dataset.

Overview

The COCO-Stuff dataset

Holger Caesar, Jasper Uijlings, Vittorio Ferrari

COCO-Stuff example annotations

Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augments all 164K images of the popular COCO [2] dataset with pixel-level stuff annotations. These annotations can be used for scene understanding tasks like semantic segmentation, object detection and image captioning.

Overview

Highlights

  • 164K complex images from COCO [2]
  • Dense pixel-level annotations
  • 80 thing classes, 91 stuff classes and 1 class 'unlabeled'
  • Instance-level annotations for things from COCO [2]
  • Complex spatial context between stuff and things
  • 5 captions per image from COCO [2]

Research Paper

COCO-Stuff: Thing and Stuff Classes in Context
H. Caesar, J. Uijlings, V. Ferrari,
In Computer Vision and Pattern Recognition (CVPR), 2018.
[paper][bibtex]

Versions of COCO-Stuff

  • COCO-Stuff dataset: The final version of COCO-Stuff, that is presented on this page. It includes all 164K images from COCO 2017 (train 118K, val 5K, test-dev 20K, test-challenge 20K). It covers 172 classes: 80 thing classes, 91 stuff classes and 1 class 'unlabeled'. This dataset will form the basis of all upcoming challenges.
  • COCO 2017 Stuff Segmentation Challenge: A semantic segmentation challenge on 55K images (train 40K, val 5K, test-dev 5K, test-challenge 5K) of COCO. To focus on stuff, we merged all 80 thing classes into a single class 'other'. The results of the challenge were presented at the Joint COCO and Places Recognition Workshop at ICCV 2017.
  • COCO-Stuff 10K dataset: Our first dataset, annotated by 10 in-house annotators at the University of Edinburgh. It includes 10K images from the training set of COCO. We provide a 9K/1K (train/val) split to make results comparable. The dataset includes 80 thing classes, 91 stuff classes and 1 class 'unlabeled'. This was initially presented as 91 thing classes, but is now changed to 80 thing classes, as 11 classes do not have any segmentation annotations in COCO. This dataset is a subset of all other releases.

Downloads

Filename Description Size
train2017.zip COCO 2017 train images (118K images) 18 GB
val2017.zip COCO 2017 val images (5K images) 1 GB
stuffthingmaps_trainval2017.zip Stuff+thing PNG-style annotations on COCO 2017 trainval 659 MB
stuff_trainval2017.zip Stuff-only COCO-style annotations on COCO 2017 trainval 543 MB
annotations_trainval2017.zip Thing-only COCO-style annotations on COCO 2017 trainval 241 MB
labels.md Indices, names, previews and descriptions of the classes in COCO-Stuff <10 KB
labels.txt Machine readable version of the label list <10 KB
README.md This readme <10 KB

To use this dataset you will need to download the images (18+1 GB!) and annotations of the trainval sets. To download earlier versions of this dataset, please visit the COCO 2017 Stuff Segmentation Challenge or COCO-Stuff 10K.

Caffe-compatible stuff-thing maps We suggest using the stuffthingmaps, as they provide all stuff and thing labels in a single .png file per image. Note that the .png files are indexed images, which means they store only the label indices and are typically displayed as grayscale images. To be compatible with most Caffe-based semantic segmentation methods, thing+stuff labels cover indices 0-181 and 255 indicates the 'unlabeled' or void class.

Separate stuff and thing downloads Alternatively you can download the separate files for stuff and thing annotations in COCO format, which are compatible with the COCO-Stuff API. Note that the stuff annotations contain a class 'other' with index 183 that covers all non-stuff pixels.

Setup

Use the following instructions to download the COCO-Stuff dataset and setup the folder structure. The instructions are for Ubuntu and require git, wget and unzip. On other operating systems the commands may differ:

# Get this repo
git clone https://github.com/nightrome/cocostuff.git
cd cocostuff

# Download everything
wget --directory-prefix=downloads http://images.cocodataset.org/zips/train2017.zip
wget --directory-prefix=downloads http://images.cocodataset.org/zips/val2017.zip
wget --directory-prefix=downloads http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip

# Unpack everything
mkdir -p dataset/images
mkdir -p dataset/annotations
unzip downloads/train2017.zip -d dataset/images/
unzip downloads/val2017.zip -d dataset/images/
unzip downloads/stuffthingmaps_trainval2017.zip -d dataset/annotations/

Results

Below we present results on different releases of COCO-Stuff. If you would like to see your results here, please contact the first author.

Results on the val set of COCO-Stuff:

Method Source Class accuracy Pixel accuracy Mean IOU FW IOU
Deeplab VGG-16 (no CRF) [4] [1] 45.1% 63.6% 33.2% 47.6%

Note that the results between the 10K dataset and the full dataset are not direclty comparable, as different train and val images are used. Furthermore, on the full dataset we train Deeplab for 100K iterations [1], compared to 20K iterations on the 10K dataset [1b].

Results on the val set of the COCO 2017 Stuff Segmentation Challenge:

We show results on the val set of the challenge. Please refer to the official leaderboard for results on the test-dev and test-challenge sets. Note that these results are not comparable to other COCO-Stuff results, as the challenge only includes a single thing class 'other'.

Method Source Class accuracy Pixel accuracy Mean IOU FW IOU
Inplace-ABN sync [8] - - 24.9% -

Results on the val set of COCO-Stuff 10K:

Method Source Class accuracy Pixel accuracy Mean IOU FW IOU
FCN-16s [3] [1b] 34.0% 52.0% 22.7% -
Deeplab VGG-16 (no CRF) [4] [1b] 38.1% 57.8% 26.9% -
FCN-8s [3] [6] 38.5% 60.4% 27.2% -
SCA VGG-16 [7] [7] 42.5% 61.6% 29.1% -
DAG-RNN + CRF [6] [6] 42.8% 63.0% 31.2% -
DC + FCN+ [5] [5] 44.6% 65.5% 33.6% 50.6%
Deeplab ResNet (no CRF) [4] - 45.5% 65.1% 34.4% 50.4%
CCL ResNet-101 [10] [10] 48.8% 66.3% 35.7% -
DSSPN ResNet finetune [9] [9] 48.1% 69.4% 37.3% -
* OHE + DC + FCN+ [5] [5] 45.8% 66.6% 34.3% 51.2%
* W2V + DC + FCN+ [5] [5] 45.1% 66.1% 34.7% 51.0%
* DSSPN ResNet universal [9] [9] 50.3% 70.7% 38.9% -

* Results not comparable as they use external data

Labels

Label Names & Indices

To be compatible with COCO, COCO-Stuff has 91 thing classes (1-91), 91 stuff classes (92-182) and 1 class "unlabeled" (0). Note that 11 of the thing classes of COCO do not have any segmentation annotations (blender, desk, door, eye glasses, hair brush, hat, mirror, plate, shoe, street sign, window). The classes desk, door, mirror and window could be either stuff or things and therefore occur in both COCO and COCO-Stuff. To avoid confusion we add the suffix "-stuff" or "-other" to those classes in COCO-Stuff. The full list of classes and their descriptions can be found here.

Label Hierarchy

This figure shows the label hierarchy of COCO-Stuff including all stuff and thing classes: COCO-Stuff label hierarchy

Semantic Segmentation Models (stuff+things)

PyTorch model

We recommend this third party re-implementation of Deeplab v2 in PyTorch. Contrary to our Caffe model, it supports ResNet and CRFs. The authors provide setup routines and models for COCO-Stuff 164K. Please file any issues or questions on the project's GitHub page.

Caffe model

Here we provide the Caffe-based segmentation model used in the COCO-Stuff paper. However, for users not familiar with Caffe we recommend the above PyTorch model. Before using the semantic segmentation model, please setup the dataset. The commands below download and install Deeplab (incl. Caffe), download or train the model and predictions and evaluate the performance. The results should be the same as in the table. Due to several issues, we do not provide the Deeplab ResNet101 model, but some code for it can be found in this folder.

# Get and install Deeplab (you may need to change settings)
# We use a special version of Deeplab v2 that supports CuDNN v5, but others may work as well.
git submodule update --init models/deeplab/deeplab-v2
cd models/deeplab/deeplab-v2
cp Makefile.config.example Makefile.config
make all -j8

# Create symbolic links to the images and annotations
cd models/deeplab/cocostuff/data && ln -s ../../../../dataset/images images && ln -s ../../../../dataset/annotations annotations && cd ../../../..

# Option 1: Download the initial model
# wget --directory-prefix=models/deeplab/cocostuff/model/deeplabv2_vgg16 http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplabv2_vgg16_init.caffemodel

# Option 2: Download the trained model
# wg --directory-prefix=downloads http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplab_cocostuff_trainedmodel.zip
# zip downloads/deeplab_cocostuff_trainedmodel.zip -d models/deeplab/cocostuff/model/deeplabv2_vgg16/model120kimages/

# Option 3: Run training & test
# cd models/deeplab && ./run_cocostuff_vgg16.sh && cd ../..

# Option 4 (fastest): Download predictions
wget --directory-prefix=downloads http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplab_predictions_cocostuff_val2017.zip
unzip downloads/deeplab_predictions_cocostuff_val2017.zip -d models/deeplab/cocostuff/features/deeplabv2_vgg16/model120kimages/val/fc8/

# Evaluate performance
python models/deeplab/evaluate_performance.py

The table below summarizes the files used in these instructions:

Filename Description Size
deeplabv2_vgg16_init.caffemodel Deeplab VGG-16 pretrained model (original link) 152 MB
deeplab_cocostuff_trainedmodel.zip Deeplab VGG-16 trained on COCO-Stuff 286 MB
deeplab_predictions_cocostuff_val2017.zip Deeplab VGG-16 predictions on COCO-Stuff 54 MB

Note that the Deeplab predictions need to be rotated and cropped, as shown in this script.

Annotation Tool

For the Matlab annotation tool used to annotate the initial 10K images, please refer to this repository.

Misc

References

Licensing

COCO-Stuff is a derivative work of the COCO dataset. The authors of COCO do not in any form endorse this work. Different licenses apply:

Acknowledgements

This work is supported by the ERC Starting Grant VisCul. The annotations were done by the crowdsourcing startup Mighty AI, and financed by Mighty AI and the Common Visual Data Foundation.

Contact

If you have any questions regarding this dataset, please contact us at holger-at-it-caesar.com.

Owner
Holger Caesar
Author of the COCO-Stuff and nuScenes datasets.
Holger Caesar
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022