The official homepage of the (outdated) COCO-Stuff 10K dataset.

Overview

COCO-Stuff 10K dataset v1.1 (outdated)

Holger Caesar, Jasper Uijlings, Vittorio Ferrari

Overview

COCO-Stuff example annotations

Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augments the popular COCO [2] dataset with pixel-level stuff annotations. These annotations can be used for scene understanding tasks like semantic segmentation, object detection and image captioning.

Overview

Highlights

  • 10,000 complex images from COCO [2]
  • Dense pixel-level annotations
  • 91 thing and 91 stuff classes
  • Instance-level annotations for things from COCO [2]
  • Complex spatial context between stuff and things
  • 5 captions per image from COCO [2]

Updates

  • 11 Jul 2017: Added working Deeplab models for Resnet and VGG
  • 06 Apr 2017: Dataset version 1.1: Modified label indices
  • 31 Mar 2017: Published annotations in JSON format
  • 09 Mar 2017: Added label hierarchy scripts
  • 08 Mar 2017: Corrections to table 2 in arXiv paper [1]
  • 10 Feb 2017: Added script to extract SLICO superpixels in annotation tool
  • 12 Dec 2016: Dataset version 1.0 and arXiv paper [1] released

Results

The current release of COCO-Stuff-10K publishes both the training and test annotations and users report their performance individually. We invite users to report their results to us to complement this table. In the near future we will extend COCO-Stuff to all images in COCO and organize an official challenge where the test annotations will only be known to the organizers.

For the updated table please click here.

Method Source Class-average accuracy Global accuracy Mean IOU FW IOU
FCN-16s [3] [1] 34.0% 52.0% 22.7% -
Deeplab VGG-16 (no CRF) [4] [1] 38.1% 57.8% 26.9% -
FCN-8s [3] [6] 38.5% 60.4% 27.2% -
DAG-RNN + CRF [6] [6] 42.8% 63.0% 31.2% -
OHE + DC + FCN+ [5] [5] 45.8% 66.6% 34.3% 51.2%
Deeplab ResNet (no CRF) [4] - 45.5% 65.1% 34.4% 50.4%
W2V + DC + FCN+ [5] [5] 45.1% 66.1% 34.7% 51.0%

Dataset

Filename Description Size
cocostuff-10k-v1.1.zip COCO-Stuff dataset v. 1.1, images and annotations 2.0 GB
cocostuff-10k-v1.1.json COCO-Stuff dataset v. 1.1, annotations in JSON format (optional) 62.3 MB
cocostuff-labels.txt A list of the 1+91+91 classes in COCO-Stuff 2.3 KB
cocostuff-readme.txt This document 6.5 KB
Older files
cocostuff-10k-v1.0.zip COCO-Stuff dataset version 1.0, including images and annotations 2.6 GB

Usage

To use the COCO-Stuff dataset, please follow these steps:

  1. Download or clone this repository using git: git clone https://github.com/nightrome/cocostuff10k.git
  2. Open the dataset folder in your shell: cd cocostuff10k
  3. If you have Matlab, run the following commands:
  • Add the code folder to your Matlab path: startup();
  • Run the demo script in Matlab demo_cocoStuff();
  • The script displays an image, its thing, stuff and thing+stuff annotations, as well as the image captions.
  1. Alternatively run the following Linux commands or manually download and unpack the dataset:
  • wget --directory-prefix=downloads http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.zip
  • unzip downloads/cocostuff-10k-v1.1.zip -d dataset/

MAT Format

The COCO-Stuff annotations are stored in separate .mat files per image. These files follow the same format as used by Tighe et al.. Each file contains the following fields:

  • S: The pixel-wise label map of size [height x width].
  • names: The names of the thing and stuff classes in COCO-Stuff. For more details see Label Names & Indices.
  • captions: Image captions from [2] that are annotated by 5 distinct humans on average.
  • regionMapStuff: A map of the same size as S that contains the indices for the approx. 1000 regions (superpixels) used to annotate the image.
  • regionLabelsStuff: A list of the stuff labels for each superpixel. The indices in regionMapStuff correspond to the entries in regionLabelsStuff.

JSON Format

Alternatively, we also provide stuff and thing annotations in the COCO-style JSON format. The thing annotations are copied from COCO. We encode every stuff class present in an image as a single annotation using the RLE encoding format of COCO. To get the annotations:

  • Either download them: wget --directory-prefix=dataset/annotations-json http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.json
  • Or extract them from the .mat file annotations using this Python script.

Label Names & Indices

To be compatible with COCO, version 1.1 of COCO-Stuff has 91 thing classes (1-91), 91 stuff classes (92-182) and 1 class "unlabeled" (0). Note that 11 of the thing classes from COCO 2015 do not have any segmentation annotations. The classes desk, door and mirror could be either stuff or things and therefore occur in both COCO and COCO-Stuff. To avoid confusion we add the suffix "-stuff" to those classes in COCO-Stuff. The full list of classes can be found here.

The older version 1.0 of COCO-Stuff had 80 thing classes (2-81), 91 stuff classes (82-172) and 1 class "unlabeled" (1).

Label Hierarchy

The hierarchy of labels is stored in CocoStuffClasses. To visualize it, run CocoStuffClasses.showClassHierarchyStuffThings() (also available for just stuff and just thing classes) in Matlab. The output should look similar to the following figure: COCO-Stuff label hierarchy

Semantic Segmentation Models

To encourage further research of stuff and things we provide the trained semantic segmentation model (see Sect. 4.4 in [1]).

DeepLab VGG-16

Use the following steps to download and setup the DeepLab [4] semantic segmentation model trained on COCO-Stuff. It requires deeplab-public-ver2, which is built on Caffe:

  1. Install Cuda. I recommend version 7.0. For version 8.0 you will need to apply the fix described here in step 3.
  2. Download deeplab-public-ver2: git submodule update --init models/deeplab/deeplab-public-ver2
  3. Compile and configure deeplab-public-ver2 following the author's instructions. Depending on your system setup you might have to install additional packages, but a minimum setup could look like this:
  • cd models/deeplab/deeplab-public-ver2
  • cp Makefile.config.example Makefile.config
  • Optionally add CuDNN support or modify library paths in the Makefile.
  • make all -j8
  • cd ../..
  1. Configure the COCO-Stuff dataset:
  • Create folders: mkdir models/deeplab/deeplab-public-ver2/cocostuff && mkdir models/deeplab/deeplab-public-ver2/cocostuff/data
  • Create a symbolic link to the images: cd models/deeplab/cocostuff/data && ln -s ../../../../dataset/images images && cd ../../../..
  • Convert the annotations by running the Matlab script: startup(); convertAnnotationsDeeplab();
  1. Download the base VGG-16 model:
  • wget --directory-prefix=models/deeplab/cocostuff/model/deeplabv2_vgg16 http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplabv2_vgg16_init.caffemodel
  1. Run cd models/deeplab && ./run_cocostuff_vgg16.sh to train and test the network on COCO-Stuff.

DeepLab ResNet 101

The default Deeplab model performs center crops of size 513*513 pixels of an image, if any side is larger than that. Since we want to segment the whole image at test time, we choose to resize the images to 513x513, perform the semantic segmentation and then rescale it elsewhere. Note that without the final step, the performance might differ slightly.

  1. Follow steps 1-4 of the DeepLab VGG-16 section above.
  2. Download the base ResNet model:
  • wget --directory-prefix=models/deeplab/cocostuff/model/deeplabv2_resnet101 http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplabv2_resnet101_init.caffemodel
  1. Rescale the images and annotations:
  • cd models/deeplab
  • python rescaleImages.py
  • python rescaleAnnotations.py
  1. Run ./run_cocostuff_resnet101.sh to train and test the network on COCO-Stuff.

Annotation Tool

In [1] we present a simple and efficient stuff annotation tool which was used to annotate the COCO-Stuff dataset. It uses a paintbrush tool to annotate SLICO superpixels (precomputed using the code of Achanta et al.) with stuff labels. These annotations are overlaid with the existing pixel-level thing annotations from COCO. We provide a basic version of our annotation tool:

  • Prepare the required data:
    • Specify a username in annotator/data/input/user.txt.
    • Create a list of images in annotator/data/input/imageLists/<user>.list.
    • Extract the thing annotations for all images in Matlab: extractThings().
    • Extract the superpixels for all images in Matlab: extractSLICOSuperpixels().
    • To enable or disable superpixels, thing annotations and polygon drawing, take a look at the flags at the top of CocoStuffAnnotator.m.
  • Run the annotation tool in Matlab: CocoStuffAnnotator();
    • The tool writes the .mat label files to annotator/data/output/annotations.
    • To create a .png preview of the annotations, run annotator/code/exportImages.m in Matlab. The previews will be saved to annotator/data/output/preview.

Misc

References

Licensing

COCO-Stuff is a derivative work of the COCO dataset. The authors of COCO do not in any form endorse this work. Different licenses apply:

Contact

If you have any questions regarding this dataset, please contact us at holger-at-it-caesar.com.

Owner
Holger Caesar
Author of the COCO-Stuff and nuScenes datasets.
Holger Caesar
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021