Details about the wide minima density hypothesis and metrics to compute width of a minima

Overview

wide-minima-density-hypothesis

Details about the wide minima density hypothesis and metrics to compute width of a minima

This repo presents the wide minima density hypothesis as proposed in the following paper:

Key contributions:

  • Hypothesis about minima density
  • A SOTA LR schedule that exploits the hypothesis and beats general baseline schedules
  • Reducing wall clock training time and saving GPU compute hours with our LR schedule (Pretraining BERT-Large in 33% less training steps)
  • SOTA BLEU score on IWSLT'14 ( DE-EN )

Prerequisite:

  • CUDA, cudnn
  • Python 3.6+
  • PyTorch 1.4.0

Knee LR Schedule

Based on the density of wide vs narrow minima , we propose the Knee LR schedule that pushes generalization boundaries further by exploiting the nature of the loss landscape. The LR schedule is an explore-exploit based schedule, where the explore phase maintains a high lr for a significant time to access and land into a wide minimum with a good probability. The exploit phase is a simple linear decay scheme, which decays the lr to zero over the exploit phase. The only hyperparameter to tune is the explore epochs/steps. We have shown that 50% of the training budget allocated for explore is good enough for landing in a wider minimum and better generalization, thus removing the need for hyperparameter tuning.

  • Note that many experiments require warmup, which is done in the initial phase of training for a fixed number of steps and is usually required for Adam based optimizers/ large batch training. It is complementary with the Knee schedule and can be added to it.

To use the Knee Schedule, import the scheduler into your training file:

>>> from knee_lr_schedule import KneeLRScheduler
>>> scheduler = KneeLRScheduler(optimizer, peak_lr, warmup_steps, explore_steps, total_steps)

To use it during training :

>>> model.train()
>>> output = model(inputs)
>>> loss = criterion(output, targets)
>>> loss.backward()
>>> optimizer.step()
>>> scheduler.step()

Details about args:

  • optimizer: optimizer needed for training the model ( SGD/Adam )
  • peak_lr: the peak learning required for explore phase to escape narrow minimas
  • warmup_steps: steps required for warmup( usually needed for adam optimizers/ large batch training) Default value: 0
  • explore_steps: total steps for explore phase.
  • total_steps: total training budget steps for training the model

Measuring width of a minima

Keskar et.al 2016 (https://arxiv.org/abs/1609.04836) argue that wider minima generalize much better than sharper minima. The computation method in their work uses the compute expensive LBFGS-B second order method, which is hard to scale. We use a projected gradient ascent based method, which is first order in nature and very easy to implement/use. Here is a simple way you can compute the width of the minima your model finds during training:

>>> from minima_width_compute import ComputeKeskarSharpness
>>> cks = ComputeKeskarSharpness(model_final_ckpt, optimizer, criterion, trainloader, epsilon, lr, max_steps)
>>> width = cks.compute_sharpness()

Details about args:

  • model_final_ckpt: model loaded with the saved checkpoint after final training step
  • optimizer : optimizer to use for projected gradient ascent ( SGD, Adam )
  • criterion : criterion for computing loss (e.g. torch.nn.CrossEntropyLoss)
  • trainloader : iterator over the training dataset (torch.utils.data.DataLoader)
  • epsilon : epsilon value determines the local boundary around which minima witdh is computed (Default value : 1e-4)
  • lr : lr for the optimizer to perform projected gradient ascent ( Default: 0.001)
  • max_steps : max steps to compute the width (Default: 1000). Setting it too low could lead to the gradient ascent method not converging to an optimal point.

The above default values have been chosen after tuning and observing the loss values of projected gradient ascent on Cifar-10 with ResNet-18 and SGD-Momentum optimizer, as mentioned in our paper. The values may vary for experiments with other optimizers/datasets/models. Please tune them for optimal convergence.

  • Acknowledgements: We would like to thank Harshay Shah (https://github.com/harshays) for his helpful discussions for computing the width of the minima.

Citation

Please cite our paper in your publications if you use our work:

@article{iyer2020wideminima,
  title={Wide-minima Density Hypothesis and the Explore-Exploit Learning Rate Schedule},
  author={Iyer, Nikhil and Thejas, V and Kwatra, Nipun and Ramjee, Ramachandran and Sivathanu, Muthian},
  journal={arXiv preprint arXiv:2003.03977},
  year={2020}
}
  • Note: This work was done during an internship at Microsoft Research India
Owner
Nikhil Iyer
Studied at BITS-Pilani Hyderabad Campus. AI Research @ Jio-Haptik. Ex Microsoft Research India
Nikhil Iyer
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022