Multi-Modal Machine Learning toolkit based on PaddlePaddle.

Related tags

Deep LearningPaddleMM
Overview

简体中文 | English

PaddleMM

简介

飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。

近期更新

  • 2022.1.5 发布 PaddleMM 初始版本 v1.0

特性

  • 丰富的任务场景:工具包提供多模态融合、跨模态检索、图文生成等多种多模态学习任务算法模型库,支持用户自定义数据和训练。
  • 成功的落地应用:基于工具包算法已有相关落地应用,如球鞋真伪鉴定、球鞋风格迁移、家具图片自动描述、舆情监控等。

应用展示

  • 球鞋真伪鉴定 (更多信息欢迎访问我们的网站 Ysneaker !)
  • 更多应用

落地实践

  • 与百度人才智库(TIC)合作 智能招聘 简历分析,基于多模态融合算法并成功落地。

框架

PaddleMM 包括以下模块:

  • 数据处理:提供统一的数据接口和多种数据处理格式
  • 模型库:包括多模态融合、跨模态检索、图文生成、多任务算法
  • 训练器:对每种任务设置统一的训练流程和相关指标计算

使用

下载工具包

git clone https://github.com/njustkmg/PaddleMM.git

使用示例:

from paddlemm import PaddleMM

# config: Model running parameters, see configs/
# data_root: Path to dataset
# image_root: Path to images
# gpu: Which gpu to use

runner = PaddleMM(config='configs/cmml.yml',
                  data_root='data/COCO', 
                  image_root='data/COCO/images', 
                  gpu=0)

runner.train()
runner.test()

或者

python run.py --config configs/cmml.yml --data_root data/COCO --image_root data/COCO/images --gpu 0

模型库 (更新中)

[1] Comprehensive Semi-Supervised Multi-Modal Learning

[2] Stacked Cross Attention for Image-Text Matching

[3] Similarity Reasoning and Filtration for Image-Text Matching

[4] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

[5] Attention on Attention for Image Captioning

[6] VQA: Visual Question Answering

[7] ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

实验结果 (COCO) (更新中)

  • Multimodal fusion
Average_Precision Coverage Example_AUC Macro_AUC Micro_AUC Ranking_Loss
CMML 0.682 18.827 0.948 0.927 0.950 0.052 semi-supervised
Early(add) 0.974 16.681 0.969 0.952 0.968 0.031 VGG+LSTM
Early(add) 0.974 16.532 0.971 0.958 0.972 0.029 ResNet+GRU
Early(concat) 0.797 16.366 0.972 0.959 0.973 0.028 ResNet+LSTM
Early(concat) 0.798 16.541 0.971 0.959 0.972 0.029 ResNet+GRU
Early(concat) 0.795 16.704 0.969 0.952 0.968 0.031 VGG+LSTM
Late(mean) 0.733 17.849 0.959 0.947 0.963 0.041 ResNet+LSTM
Late(mean) 0.734 17.838 0.959 0.945 0.962 0.041 ResNet+GRU
Late(mean) 0.738 17.818 0.960 0.943 0.962 0.040 VGG+LSTM
Late(mean) 0.735 17.938 0.959 0.941 0.959 0.041 VGG+GRU
Late(max) 0.742 17.953 0.959 0.944 0.961 0.041 ResNet+LSTM
Late(max) 0.736 17.955 0.959 0.941 0.961 0.041 ResNet+GRU
Late(max) 0.727 17.949 0.958 0.940 0.959 0.042 VGG+LSTM
Late(max) 0.737 17.983 0.959 0.942 0.959 0.041 VGG+GRU
  • Image caption
Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge Cider
NIC(paper) 71.8 50.3 35.7 25.0 23.0 - -
NIC-VGG(ours) 69.9 52.4 37.9 27.1 23.4 51.4 84.5
NIC-ResNet(ours) 72.8 56.0 41.4 30.1 25.2 53.7 95.9
AoANet-CE(paper) 78.7 - - 38.1 28.4 57.5 119.8
AoANet-CE(ours) 75.1 58.7 44.4 33.2 27.2 55.8 109.3

成果

多模态论文

  • Yang Yang, Chubing Zhang, Yi-Chu Xu, Dianhai Yu, De-Chuan Zhan, Jian Yang. Rethinking Label-Wise Cross-Modal Retrieval from A Semantic Sharing Perspective. Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-2021), Montreal, Canada, 2021. (CCF-A).
  • Yang Yang, Ke-Tao Wang, De-Chuan Zhan, Hui Xiong, Yuan Jiang. Comprehensive Semi-Supervised Multi-Modal Learning. Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019) , Macao, China, 2019. [Pytorch Code] [Paddle Code]
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Deep Robust Unsupervised Multi-Modal Network. Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-2019) , Honolulu, Hawaii, 2019.
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Yuan Jiang. Deep Multi-modal Learning with Cascade Consensus. Proceedings of the Pacific Rim International Conference on Artificial Intelligence (PRICAI-2018) , Nanjing, China, 2018.
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Complex Object Classification: A Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. Proceedings of the Annual Conference on ACM SIGKDD (KDD-2018) , London, UK, 2018. [Code]
  • Yang Yang, De-Chuan Zhan, Xiang-Rong Sheng, Yuan Jiang. Semi-Supervised Multi-Modal Learning with Incomplete Modalities. Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-2018) , Stockholm, Sweden, 2018.
  • Yang Yang, De-Chuan Zhan, Ying Fan, and Yuan Jiang. Instance Specific Discriminative Modal Pursuit: A Serialized Approach. Proceedings of the 9th Asian Conference on Machine Learning (ACML-2017) , Seoul, Korea, 2017. [Best Paper] [Code]
  • Yang Yang, De-Chuan Zhan, Xiang-Yu Guo, and Yuan Jiang. Modal Consistency based Pre-trained Multi-Model Reuse. Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-2017) , Melbourne, Australia, 2017.
  • Yang Yang, De-Chuan Zhan, Yin Fan, Yuan Jiang, and Zhi-Hua Zhou. Deep Learning for Fixed Model Reuse. Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI-2017), San Francisco, CA. 2017.
  • Yang Yang, De-Chuan Zhan and Yuan Jiang. Learning by Actively Querying Strong Modal Features. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-2016), New York, NY. 2016, Page: 1033-1039.
  • Yang Yang, Han-Jia Ye, De-Chuan Zhan and Yuan Jiang. Auxiliary Information Regularized Machine for Multiple Modality Feature Learning. Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-2015), Buenos Aires, Argentina, 2015, Page: 1033-1039.
  • Yang Yang, De-Chuan Zhan, Yi-Feng Wu, Zhi-Bin Liu, Hui Xiong, and Yuan Jiang. Semi-Supervised Multi-Modal Clustering and Classification with Incomplete Modalities. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2020. (CCF-A)
  • Yang Yang, Zhao-Yang Fu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Semi-Supervised Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2020. (CCF-A)

更多论文欢迎访问我们的网站 njustlkmg

飞桨论文复现挑战赛

  • 飞桨论文复现挑战赛 (第四期):《Comprehensive Semi-Supervised Multi-Modal Learning》赛题冠军
  • 飞桨论文复现挑战赛 (第五期):《From Recognition to Cognition: Visual Commonsense Reasoning》赛题冠军

贡献

  • 非常感谢百度人才智库(TIC)提供的技术和应用落地支持。
  • 我们非常欢迎您为 PaddleMM 贡献代码,也十分感谢你的反馈。

许可证书

本项目的发布受 Apache 2.0 license 许可认证。

Owner
njustkmg
njustkmg
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
113 Nov 28, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022