(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

Related tags

Deep LearningProHMR
Overview

ProHMR - Probabilistic Modeling for Human Mesh Recovery

Code repository for the paper:
Probabilistic Modeling for Human Mesh Recovery
Nikos Kolotouros, Georgios Pavlakos, Dinesh Jayaraman, Kostas Daniilidis
ICCV 2021
[paper] [project page] [colab notebook]

teaser

Installation instructions

We recommend creating a clean conda environment and install all dependencies. You can do this as follows:

conda env create -f environment.yml

After the installation is complete you can activate the conda environment by running:

conda activate prohmr

Alternatively, you can also create a virtual environment:

python -m venv .prohmr_venv
source .prohmr_venv/bin/activate
pip install -r requirements.txt

The last step is to install prohmr as a Python package. This will allow you to import it from anywhere in your system. Since you might want to modify the code, we recommend installing as follows:

python setup.py develop

In case you want to evaluate our approach on Human3.6M, you also need to manually install the pycdf package of the spacepy library to process some of the original files. If you face difficulties with the installation, you can find more elaborate instructions here.

Fetch data

Download the pretrained model checkpoint together with some additional data (joint regressors, etc.) and place them under data/. We provide a script to fetch the necessary data for training and evaluation. You need to run:

./fetch_data.sh

Besides these files, you also need to download the SMPL model. You will need the neutral model for training and running the demo code, while the male and female models will be necessary for preprocessing the 3DPW dataset. Please go to the websites for the corresponding projects and register to get access to the downloads section. Create a folder data/smpl/ and place the models there.

Run demo code

The easiest way to try our demo is by providing images with their corresponding OpenPose detections. These are used to compute the bounding boxes around the humans and optionally fit the SMPL body model to the keypoint detections. We provide some example images in the example_data/ folder. You can test our network on these examples by running:

python demo.py --img_folder=example_data/images --keypoint_folder=example_data/keypoints --out_folder=out --run_fitting

You might see some warnings about missing keys for SMPL components, which you can ignore. The code will save the rendered results for the regression and fitting in the newly created out/ directory. By default the demo code performs the fitting in the image crop and not in the original image space. If you want to instead fit in the original image space you can pass the --full_frame flag.

Colab Notebook

We also provide a Colab Notebook here where you can test our method on videos from YouTube. Check it out!

Dataset preprocessing

Besides the demo code, we also provide code to train and evaluate our models on the datasets we employ for our empirical evaluation. Before continuing, please make sure that you follow the details for data preprocessing.

Run evaluation code

The evaluation code is contained in eval/. We provide 4 different evaluation scripts.

  • eval_regression.py is used to evaluate ProHMR as a regression model as in Table 1 of the paper.
  • eval_keypoint_fitting.py is used to evaluate the fitting on 2D keypoints as in Table 3 of the paper.
  • eval_multiview.py is used to evaluate the multi-view refinement as in Table 5 of the paper.
  • eval_skeleton.py is used to evaluate the probablistic 2D pose lifiting network similarly with Table 6 of the main paper. Example usage:
python eval/eval_keypoint_fitting.py --dataset=3DPW-TEST

Running the above command will compute the Reconstruction Error before and after the fitting on the test set of 3DPW. For more information on the available command line options you can run the command with the --help argument.

Run training code

Due to license limitiations, we cannot provide the SMPL parameters for Human3.6M (recovered using MoSh). Even if you do not have access to these parameters, you can still use our training code using data from the other datasets. Again, make sure that you follow the details for data preprocessing. Alternatively you can use the SMPLify 3D fitting code to generate SMPL parameter annotations by fitting the model to the 3D keypoints provided by the dataset. Example usage:

python train/train_prohmr.py --root_dir=prohmr_reproduce/

This will train the model using the default config file prohmr/configs/prohmr.yaml as described in the paper. It will also create the folders prohmr_reproduce/checkpoints and prohmr_reproduce/tensorboard where the model checkpoints and Tensorboard logs will be saved.

We also provide the training code for the probabilistic version of Martinez et al. We are not allowed to redistribute the Stacked Hourglass keypoint detections used in training the model in the paper, so in this version of the code we replace them with the ground truth 2D keypoints of the dataset. You can train the skeleton model by running:

python train/train_skeleton.py --root_dir=skeleton_lifting/

Running this script will produce a similar output with the ProHMR training script.

Acknowledgements

Parts of the code are taken or adapted from the following repos:

Citing

If you find this code useful for your research or the use data generated by our method, please consider citing the following paper:

@Inproceedings{kolotouros2021prohmr,
  Title          = {Probabilistic Modeling for Human Mesh Recovery},
  Author         = {Kolotouros, Nikos and Pavlakos, Georgios and Jayaraman, Dinesh and Daniilidis, Kostas},
  Booktitle      = {ICCV},
  Year           = {2021}
}
Owner
Nikos Kolotouros
I am a CS PhD student at the University of Pennsylvania working on Computer Vision and Machine Learning.
Nikos Kolotouros
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022