Meta graph convolutional neural network-assisted resilient swarm communications

Overview

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

This repository contains the source codes of

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

Zhiyu Mou, Feifei Gao, Jun Liu, and Qihui Wu

Fei-Lab

Problem Descriptions

In this paper, we study the self-healing of communication connectivity (SCC) problem of unmanned aerial vehicle (UAV) swarm network (USNET) that is required to quickly rebuild the communication connectivity under unpredictable external destructions (UEDs). Firstly, to cope with the one-off UEDs, we propose a graph convolutional neural network (GCN) and find the recovery topology of the USNET in an on-line manner. Secondly, to cope with general UEDs, we develop a GCN based trajectory planning algorithm that can make UAVs rebuild the communication connectivity during the self-healing process. We also design a meta learning scheme to facilitate the on-line executions of the GCN. Numerical results show that the proposed algorithms can rebuild the communication connectivity of the USNET more quickly than the existing algorithms under both one-off UEDs and general UEDs. The simulation results also show that the meta learning scheme can not only enhance the performance of the GCN but also reduce the time complexity of the on-line executions.

Display of Main Results Demo

One-off UEDs

randomly destruct 150 UAVs                             randomly destruct 100 UAVs

150 100

General UEDs

general UEDs with global information           general UEDs with monitoring mechanism

general_global_info general

Note: these are gifs. It may take a few seconds to display. You can refresh the page if they cannot display normally. Or you can view them in ./video.

Environment Requirements

pytorch==1.6.0
torchvision==0.7.0
numpy==1.18.5
matplotlib==3.2.2
pandas==1.0.5
seaborn==0.10.1
cuda supports and GPU acceleration

Note: other versions of the required packages may also work.

The machine we use

CPU: Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz
GPU: NVIDIA GeForce RTX 3090

Necessary Supplementary Downloads

As some of the necessary configuration files, including .xlsx and .npy files can not be uploaded to the github, we upload these files to the clouds. Anyone trying to run these codes need to download the necessary files.

Download initial UAV positions (necessary)

To make the codes reproducible, you need to download the initial positions of UAVs we used in the experiment from https://cloud.tsinghua.edu.cn/f/c18807be55634378b30f/ or https://drive.google.com/file/d/1q1J-F2OAY_VDaNd1DWCfy_N2loN7o1XV/view?usp=sharing. Upzip the download files to ./Configurations/.

Download Trained Meta Parameters (alternative, but if using meta learning without training again, then necessary)

Since the total size of meta parameters is about 1.2GB, we have uploaded the meta parameters to https://cloud.tsinghua.edu.cn/f/2cb28934bd9f4bf1bdd7/ and https://drive.google.com/file/d/1QPipenDZi_JctNH3oyHwUXsO7QwNnLOz/view?usp=sharing. You need to download the file from either two links and unzip them to ./Meta_Learning_Results/meta_parameters/if you want to use the trained meta parameters. Otherwise, you need to train the meta parameters again (directly run Meta-learning_all.py)

Download Meta Learning Loss Functions Pictures (alternative)

The loss function pictures of meta learning are available on https://cloud.tsinghua.edu.cn/f/fc0d84f2c6374e29bcbe/ and https://drive.google.com/file/d/1cdceleZWyXcD1GxOPCYlLsRVTwNRWPBy/view?usp=sharing. You can store them in ./Meta_Learning_Results/meta_loss_pic/

Quick Start

Simulate SCC under one-off UEDs

directly run ./Experiment_One_off_UED.py

python Experiment_One_off_UED.py

Simulate meta learning process

directly run ./Meta-learning_all.py

python Meta-learning_all.py

Simulate SCC under general UEDs

directly run ./Experiment_General_UED.py

python Experiment_General_UED.py

File and Directory Explanations

  • ./Configurations/

the initial positions of 200 UAVs

  • ./Drawing/

the drawing functions

  • ./Experiment_Fig/

the experiment figures and the drawing source codes

  • ./Main_algorithm_GCN/

the proposed algorithms in the paper

  • ./Main_algorithm_GCN/CR_MGC.py

the CR-MGC algorithm (Algorithm 2 in the paper)

  • ./Main_algorithm_GCN/GCO.py

the GCO algorithm

  • ./Main_algorithm_GCN/Smallest_d_algorithm.py

algorithm of finding the smallest distance to make the RUAV graph a CCN (Algorithm 1 in the paper)

  • ./Meta_Learning_Results/

the results of meta learning

  • ./Meta_Learning_Results/meta_loss_pic

the loss function pictures of 199 mGCNs

  • ./Meta_Learning_Results/meta_parameters

the meta parameters (Since the total size of meta parameters is about 1.2GB, we have uploaded the meta parameters to https://cloud.tsinghua.edu.cn/f/2cb28934bd9f4bf1bdd7/ or https://drive.google.com/file/d/1QPipenDZi_JctNH3oyHwUXsO7QwNnLOz/view?usp=sharing)

  • ./Traditional_Algorithm/

the implementations of traditional algorithms

  • ./video/

the gif files of one-off UEDs

  • ./Configurations.py

the simulation parameters

  • ./Environment.py

the Environment generating UEDs

  • ./Experiment_General_UED.py/

the simulation under general UEDs

  • ./Experiment_One_off_UED.py/

the simulation under one-off UEDs

  • ./Experiment_One_off_UED_draw_Fig_12_d.py/

draw the Fig. 12(d) in the simulation under one-off UEDs

  • ./Meta-learning_all.py/

the meta learning

  • ./Swarm.py/

the integration of algorithms under one-off UEDs

  • ./Swarm_general.py/

the integration of algorithms under general UEDs

  • ./Utils.py/

the utility functions

Note that some unnecessary drawing codes used in the paper are not uploaded to this responsitory.

Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022