The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

Overview

Savior

save your time.

只在Ubuntu18.04下完成全部测试,其他平台暂时未测试。

目前项目还处于早期开发阶段,如有任何问题,欢迎添加微信nsnovio,备注部署,进群交流。

背景

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

workflow的已经做好的轮子很多,例如perfectpolyaxondagster等。 之所以开发一个新的,主要原因是那些框架都太heavy了,对于大部分用户来说没法直接白嫖。

这个项目的核心目的就是能够减少大家的重复性开发,能够把绝大部分能够直接白嫖的东西放在框架里面,然后大家专注于自己的业务属性上,提升大家的工作效率。

特性

  1. 弹性伸缩:用户可以根据目前的请求量,自定义配置机器数。方便项目上量,并且保证服务器资源吃满(支持K8S)。
  2. 流程DAG:用户通过自定义自己的流程,框架支持DAG,保证流程的最高的并行度。
  3. 容灾能力强:集群中所有节点都是相同作用,不会因为部分节点挂掉而服务崩溃。
  4. 可扩展性强:框架主要是实现了一种设计模式,开发者只需要按照当前设计模式,扩展性无上限。
  5. 部署便捷:部署到上线不会超过5分钟(不考虑网速)。

依赖的第三方组件

  • rabbitmq:用于celery进行分布式的任务分发

  • triton:用于gpu端的模型服务的集中部署

  • milvus:用于特征向量搜索,存储【推荐有搜索需求的用户自行配置】

    如果觉得milvus太大,用户可以根据自己的自身情况直接使用faiss或者nmslib。并且自己实现对应helper。

框架中已集成的算法

更多开源模型欢迎在issue中补充,也十分欢迎您的PR。

人脸相关

OCR相关

  • DB 文本检测
  • CRNN 文本识别
  • 版式分析
  • 文本图像方向矫正
  • 文本方向检测
  • 常见扇形环形转换为矩形(针对于segmentation base的检测方案)

图像搜索

通用

  • NRIQA

官方已适配模型下载地址(不定时更新):

根据自己的需要下载模型,不用全部下载。

简单使用教程

  1. 克隆项目git clone https://github.com/novioleo/Savior.git到本地。或者下载release下面的source包。
  2. 启动rabbitmq,推荐使用docker启动:docker run --restart=always -d --hostname celery-broker --name celery-broker -p5672:5672 -p15672:15672 -e RABBITMQ_DEFAULT_USER=guest -e RABBITMQ_DEFAULT_PASS=guest rabbitmq:3-management
  3. 启动triton,推荐使用docker(需要安装nvidia-docker)启动:docker run --gpus=all --name=triton-server -p8000:8000 -p8001:8001 -v/path/to/your/model/repo/path:/models nvcr.io/nvidia/tritonserver:20.12-py3 tritonserver --model-repository=/models,其中/path/to/your/model/repo/path是网盘中triton文件夹下载的所在文件夹。
  4. 修改项目配置,进入Savior文件夹中,进入Deployment包中,复制server_config.py.template并重命名为server_config.py,修改里面triton、rabbitmq的配置。
  5. 配置python与安装依赖,通过控制台进入Savior文件夹中,创建环境:conda create -n SaviorEnv python=3.8,激活环境source activate SaviorEnv,安装依赖:python -m pip install nvidia-pyindex==1.0.6 && python -m pip install -r requirements.txt
  6. 启动ConsumerWorker,通过控制台进入Savior文件夹中,启动worker:celery -A Deployment.ConsumerWorker worker --loglevel=INFO,如果一切配置正确会显示已经成功加载Task。
  7. 启动DispatchServer,通过控制台进入Savior文件夹中,启动server:python Deployment/DispathServer.py,启动成功会看到端口信息等。
  8. 测试接口服务,推荐使用apifox进行接口调用测试,可以通过post请求测试ocr_interface/general_ocr接口,传入参数image_url,发送请求(第一次运行需要等待,模型需要预热,五次之后基本上时间会稳定),会得到一个OSS的路径,如果OSS使用的是Dummy(默认),则找到/tmp/DummyOSS-temp-directory/{bucket_name}/{path}对应的文件。

生产级使用教程点我

接口结果预览

OCR相关

自然场景下OCR

如何在自有项目下开发?

移步至:DevelopTutorial

感谢

感谢各位开源项目大佬的无私奉献。

Owner
Tao Luo
Algorithmer.
Tao Luo
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022