Code for evaluating Japanese pretrained models provided by NTT Ltd.

Overview

japanese-dialog-transformers

日本語の説明文はこちら

This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialogue model provided by NTT on fairseq.


Table of contents.
Update log
Notice for using the codes
Model download
Quick start
LICENSE

Update log

  • 2021/09/17 Published dialogue models (fairseq version japanese-dialog-transformer-1.6B) and evaluation codes.

Notice for using the codes

The dialogue models provided are for evaluation and verification of model performance. Before downloading these models, please read the LICENSE and CAUTION documents. You can download and use these models only if you agree to the following three points.

  1. LICENSE
  2. To be used only for the purpose of evaluation and verification of this model, and not for the purpose of providing dialogue service itself.
  3. Take all possible care and measures to prevent damage caused by the generated text, and take responsibility for the text you generate, whether appropriate or inappropriate.

BibTeX

When publishing results using this model, please cite the following paper.

@misc{sugiyama2021empirical,
      title={Empirical Analysis of Training Strategies of Transformer-based Japanese Chit-chat Systems}, 
      author={Hiroaki Sugiyama and Masahiro Mizukami and Tsunehiro Arimoto and Hiromi Narimatsu and Yuya Chiba and Hideharu Nakajima and Toyomi Meguro},
      year={2021},
      eprint={2109.05217},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Model download


Quick start

The models published on this page can be used for utterance generation and additional fine-tuning using the scripts included in fairseq.

Install dependent libraries

The verification environment is as follows.

  • Python 3.8.10 on miniconda
  • CUDA 11.1/10.2
  • Pytorch 1.8.2 (For the installation commands, be sure to check the official page. We recommend using pip.)
  • fairseq 1.0.0(validated commit ID: 8adff65ab30dd5f3a3589315bbc1fafad52943e7)
  • sentencepiece 0.19.6

When installing fairseq, please check the official page and install the latest version. Normal pip install will only install the older version 0.10.2. If you want to run finetune with your own data, you need to install the standalone version of sentencepiece.

fairseq-interactive

Since fairseq-interactive does not have any way to keep the context, it generates responses based on the input sentences only, which is different from the setting that uses the context in Finetune and the paper experiment, so it is easy to generate inappropriate utterances.

In the following command, a small value (10) is used for beam and nbest (number of output candidates) to make the results easier to read. In actual use, it would be better to set the number to 20 or more for better results.

fairseq-interactive data/sample/bin/ \
 --path checkpoints/persona50k-flat_1.6B_33avog1i_4.16.pt\
 --beam 10 \
 --seed 0 \
 --min-len 10 \
 --source-lang src \
 --target-lang dst \
 --tokenizer space \
 --bpe sentencepiece \
 --sentencepiece-model data/dicts/sp_oall_32k.model \
--no-repeat-ngram-size 3 \
--nbest 10 \
--sampling \
--sampling-topp 0.9 \
--temperature 1.0 

dialog.py

The system utilizes a context of about four utterances, which is equivalent to the settings used in the Finetune and paper experiments.

python scripts/dialog.py data/sample/bin/ \
 --path checkpoints/dials5_1e-4_1li20zh5_tw5.143_step85.pt \
 --beam 80 \
 --min-len 10 \
 --source-lang src \
 --target-lang dst \
 --tokenizer space \
 --bpe sentencepiece \
 --sentencepiece-model data/dicts/sp_oall_32k.model \
 --no-repeat-ngram-size 3 \
 --nbest 80 \
 --sampling \
 --sampling-topp 0.9 \
 --temperature 1.0 \
 --show-nbest 5

Perplexity calculation on a specific data set

Computes the perplexity (ppl) on a particular dataset. The lower the ppl, the better the model can represent the interaction on that dataset.

fairseq-validate $DATA_PATH \
 --path $MODEL_PATH \
 --task translation \
 --source-lang src \
 --target-lang dst \
 --batch-size 2 \ 
 --ddp-backend no_c10d \
 --valid-subset test \ 
 --skip-invalid-size-inputs-valid-test 

Finetuning with Persona-chat and EmpatheticDialogues

By finetuning the Pretrained model with PersonaChat or EmpatheticDialogues, you can create a model that is almost identical to the finetuned model provided.

If you have your own dialogue data, you can place the data in the same format in data/*/raw and perform Finetune on that data. Please note, however, that we do not allow the release or distribution of Finetune models under the LISENCE. You can release your own data and let a third party run Finetune from this model.

Downloading and converting datasets

Convert data from Excel to a simple input statement (src) and output statement (dst) format, where the same row in src and dst is the corresponding input/output pair. 50000 rows are split and output as a train.

python scripts/extract_ed.py japanese_empathetic_dialogues.xlsx data/empdial/raw/

License

LISENCE

Owner
NTT Communication Science Laboratories
NTT Communication Science Laboratories
Natural Language Processing Tasks and Examples.

Natural Language Processing Tasks and Examples With the advancement of A.I. technology in recent years, natural language processing technology has bee

Soohwan Kim 53 Dec 20, 2022
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
The source code of HeCo

HeCo This repo is for source code of KDD 2021 paper "Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning". Paper Link: htt

Nian Liu 106 Dec 27, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
Text-to-Speech for Belarusian language

title emoji colorFrom colorTo sdk app_file pinned Belarusian TTS 🐸 green green gradio app.py false Belarusian TTS 📢 🤖 Belarusian TTS (text-to-speec

Yurii Paniv 1 Nov 27, 2021
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
The simple project to separate mixed voice (2 clean voices) to 2 separate voices.

Speech Separation The simple project to separate mixed voice (2 clean voices) to 2 separate voices. Result Example (Clisk to hear the voices): mix ||

vuthede 31 Oct 30, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023