Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Overview

Welcome to Yearn Gnosis Safe!

This repository contains Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS.

The infrastructure is defined using AWS Cloud Development Kit (AWS CDK). AWS CDK is an open source software development framework to define your cloud application resources using familiar programming languages.

These definitions can then be synthesized to AWS CloudFormation Templates which can be deployed AWS.

Setting up your local environment

Clone this repository.

It is best practice to use an isolated environment when working with this project. To manually create a virtualenv virtual environment on MacOS and Linux:

$ python3 -m venv .venv

After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.

$ source .venv/bin/activate

If you are a Windows platform, you would activate the virtualenv like this:

% .venv\Scripts\activate.bat

Once the virtualenv is activated, you can install the required dependencies.

$ pip install -r requirements.txt
$ pip install -r requirements-dev.txt

At this point you can now synthesize the CloudFormation template for this code.

$ cdk synth

Infrastructure

The following diagram provides a high level overview of the infrastructure that this repository deploys:

Infrastructure Diagram

Source

  1. The production bundle is deployed to an S3 bucket. You should be able to find the URL of the frontend UI by looking at the Bucket website endpoint in the Static website hosting section of the bucket's properties.
  2. The frontend UI uses blockchain nodes to power some of the functionality. You can use a service such as Infura or Alchemy.
  3. The UI performs most of its functionality by communicating with the Client Gateway.
  4. The Client Gateway retrieves information about safes from the transaction service. There is a transaction service deployed for Mainnet and Rinkeby.
  5. The Client Gateway also relies on the configuration service to determine which nodes and services to use for each network.
  6. Secrets store stores credentials for all the different services.
  7. The transaction service monitors Ethereum nodes for new blocks and inspects transactions with the trace API to index new safe related events.

Deploying Gnosis Safe

Deploying can be summarized in the following steps:

  1. Create infrastructure for secrets and add secrets
  2. Build production bundle of the Gnosis Safe UI
  3. Create the rest of the Gnosis Safe infrastructure (Client Gateway, Transaction Service, UI, Configuration Service)
  4. Index transaction data for existing safes

Prerequisites

Before you start you need to install AWS CDK CLI and bootstrap your AWS account:

  1. Prerequisites
  2. Install AWS CDK Locally
  3. Bootstrapping

The infrastructure in this repository requires a VPC with at least one public subnet. If you don't have a VPC that meets this criteria or want to provision a new VPC for this project, you can follow the instructions here.

To install a self hosted version of Gnosis Safe, you'll also need the following:

  1. An Ethereum Mainnet node with the Openethereum trace api
  2. An Ethereum Rinkeby node with the Openethereum trace api
  3. An Infura API key
  4. An Etherscan API key
  5. An Eth Gas Station API key
  6. An Exchange Rate API key

1. Create infrastructure for secrets and add secrets

Use the AWS CDK CLI to deploy the shared infrastructure including a Secrets Vault where all sensitive secrets will be stored:

$ CDK_DEPLOY_ACCOUNT="111111111111" CDK_DEPLOY_REGION="us-east-1" cdk deploy GnosisSafeStack/GnosisShared --require-approval never

CDK_DEPLOY_ACCOUNT and CDK_DEPLOY_REGION define the account and region you're deploying the infrastructure to respectively

The deployment should create a shared secrets vault for all your secrets as well 2 secrets vaults for Postgres database credentials: one for the Rinkeby Transaction Service and one for the Mainnet Transaction Service.

You can distinguish the different vaults by inspecting their tags. The Shared Secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSharedSecrets

Mainnet Postgres database credentials secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSafeStackGnosisSharedMainnetTxDatabaseSecret

Rinkeby Postgres database credentials secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSafeStackGnosisSharedRinkebyTxDatabaseSecret

Fill out the following credentials in the Shared Secrets vault:

  1. TX_DATABASE_URL_MAINNET - Use the Mainnet Postgres database credentials and create a URL using the following template: postgres://postgres:<PASSWORD>@<URL>:5432/postgres
  2. TX_ETHEREUM_TRACING_NODE_URL_MAINNET - An Ethereum Mainnet node URL that has access to the trace API
  3. TX_ETHEREUM_NODE_URL_MAINNET - An Ethereum Mainnet node URL. Can be the same as TX_ETHEREUM_TRACING_NODE_URL_MAINNET
  4. TX_DJANGO_SECRET_KEY_MAINNET - Generate randomly using openssl rand -base64 18
  5. TX_DATABASE_URL_RINKEBY - Use the Rinkeby Postgres database credentials and create a URL using the following template: postgres://postgres:<PASSWORD>@<URL>:5432/postgres
  6. TX_ETHEREUM_TRACING_NODE_URL_RINKEBY - An Ethereum Rinkeby node URL that has access to the trace API
  7. TX_ETHEREUM_NODE_URL_RINKEBY - An Ethereum Rinkeby node URL. Can be the same as TX_ETHEREUM_TRACING_NODE_URL_RINKEBY
  8. TX_DJANGO_SECRET_KEY_RINKEBY - Generate randomly using openssl rand -base64 18
  9. UI_REACT_APP_INFURA_TOKEN - An Infura API token to use in the Frontend UI
  10. UI_REACT_APP_SAFE_APPS_RPC_INFURA_TOKEN - An Infura API token that you want to use for RPC calls. Can be the same as UI_REACT_APP_INFURA_TOKEN.
  11. CFG_DJANGO_SUPERUSER_EMAIL - The email address for the superuser of the Configuration service
  12. CFG_DJANGO_SUPERUSER_PASSWORD - The password for the superuser of the Configuration service. Randomly generate using openssl rand -base64 18.
  13. CFG_DJANGO_SUPERUSER_USERNAME - The username for the superuser of the Configuration service
  14. CFG_SECRET_KEY - Generate randomly using openssl rand -base64 18
  15. CGW_EXCHANGE_API_KEY - Your Exchange Rate API key
  16. UI_REACT_APP_ETHERSCAN_API_KEY - Your Etherscan API key
  17. CGW_ROCKET_SECRET_KEY - Generate randomly using date |md5 | head -c24; echo
  18. UI_REACT_APP_ETHGASSTATION_API_KEY - Your Eth Gas Station API key
  19. CGW_WEBHOOK_TOKEN - Generate randomly using date |md5 | head -c24; echo
  20. password - Not used. Leave as is.

2. Build production bundle of the Gnosis Safe UI

The Gnosis Safe UI is part of this GitHub repo as a submodule in the docker/ui/safe-react folder. Ensure that the submodule has been initialized:

$ git submodule update --init --recursive

To build the production bundle of the Gnosis Safe UI, use the build script in the docker/ui directory:

$ cd docker/ui
$ ENVIRONMENT_NAME=production ./build.sh
$ ../..

3. Create the rest of the Gnosis Safe infrastructure (Client Gateway, Transaction Service, UI, Configuration Service)

Deploy the rest of the Gnosis Safe infrastructure:

$ CDK_DEPLOY_ACCOUNT="111111111111" CDK_DEPLOY_REGION="us-east-1" cdk deploy --all --require-approval never

4. Index transaction data for existing safes

Indexing happens automatically, however, it can take 12+ hours for indexing to catch up to the most recent transaction. Once indexing is complete, you should be able to add any existing safe.

Docker Containers

This project uses the official Gnosis Safe Docker Images as a base and applies some modifications to support a self-hosted version.

All customized Dockerfiles can be found in the docker/ directory.

Client Gateway

There are no modifications made to the original docker image.

Configuration Service

Adds a new command to bootstrap the configuration service with configurations that replicate the configurations found on the official Gnosis Safe Configuration Service.

The bootstrap command is designed to run only if there are no existing configurations.

Also modifies the default container command run by the container to run the bootstrap command on initialization.

Transactions Service

Installs a new CLI command reindex_master_copies_with_retry and a new Gnosis Safe indexer retryable_index_service that retries if a JSON RPC call fails during indexing. This was added to make indexing more reliable during initial bootstraping after a new install.

Gnosis Safe UI

Contains a git submodule with the official Gnosis Safe UI. It uses the official Gnosis Safe UI repository to build the production bundle.

Before building a production file, some of the original configuration files are replaced. The current official ui hard codes the url for the configuration and transaction services. The configuration files are replaced to point to the newly deployed configuration and transaction services.

Running docker/ui/build.sh will automatically replace the configuration files and build a production bundle.

The UI is the only component that isn't hosted in a docker container. It is hosted as a static website on S3.

Owner
Numan
Numan
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
duralava is a neural network which can simulate a lava lamp in an infinite loop.

duralava duralava is a neural network which can simulate a lava lamp in an infinite loop. Example This is not a real lava lamp but a "fake" one genera

Maximilian Bachl 87 Dec 20, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | ์žฅ์š”์—˜ 65 Jan 07, 2023
modelvshuman is a Python library to benchmark the gap between human and machine vision

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with

Bethge Lab 244 Jan 03, 2023
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer โ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโ€ƒ Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022