This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

Overview

From "Onion Not Found" to Guard Discovery (PETS'22)

This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Guard Discovery'. Each subfolder contains instructions to reproduce results, figures, and tables per the respective section in the paper. Please see the README.md files in each subfolder for more information.

Güneş Acar contributed heavily to the creation of this artifact.

Attack overview

Obtaining this Repository and Setting up the Environment

Warning: After taking below download steps, this repository is more than 16 GB in total size. There is also an accompanying data set hosted at the OSF that is about 64.5 GB.

[email protected]  $    git clone https://github.com/numbleroot/from-onion-not-found-to-guard-discovery.git
[email protected]  $    cd from-onion-not-found-to-guard-discovery
[email protected]  $    curl --location "https://files.de-1.osf.io/v1/resources/mbn95/providers/osfstorage/617bf5ad91ed6e00f3891f66?action=download&version=1&direct" --output 3_cell-pattern_large-files.tar
[email protected]  $    tar xvf 3_cell-pattern_large-files.tar
[email protected]  $    rm 3_cell-pattern_large-files.tar

The reproducibility steps described in this repository require superuser privileges (root) and a number of installed packages. Installation and setup of those will depend on your system. In case you are running a recent Ubuntu, we recommend to run the following steps so that the commands we list in the READMEs across this repository complete successfully:

  1. Update your package list: sudo apt update
  2. Install Python 3 (programming language): sudo apt install python3,
  3. Install Pip (Python package manager): sudo apt install python3-pip,
  4. Install Go (programming language): sudo apt install golang,
  5. Install Docker (virtualization software to run containers): please follow the steps listed on their documentation page,
  6. Install Jupyter Lab and Python libraries numpy, pandas, seaborn, and matplotlib: pip install jupyterlab numpy pandas seaborn matplotlib,
  7. Download Tor Browser from their download page and extract it to a location dedicated for usage with this repository.

Note: Please mind that due to /proc/cpuinfo and /proc/meminfo not being available, the attack script 4_attack-tuning/launch_attack.py will not work on MacOS (unless alternative ways to obtain the desired values are used in their places).

Primary Data Sets

Instructions for Reproduction

Browse the READMEs linked below for instructions for how to reproduce the results of each section:

Reference

You can use the following BibTeX to cite our paper:

@article{OldenburgAcarDiaz_GuardDiscovery,
    title   = {{}},
    author  = {},
    journal = {},
    number  = {},
    volume  = {},
    year    = {},
    doi     = {},
    url     = {},
    pages   = {}
}
Owner
Lennart Oldenburg
PhD student, KU Leuven. Privacy-Enhancing Technologies, Distributed Systems, Cryptography, Sustainability & Climate.
Lennart Oldenburg
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022