Numenta published papers code and data

Overview

Numenta research papers code and data

This repository contains reproducible code for selected Numenta papers. It is currently under construction and will eventually include the source code for all the scripts used in Numenta's papers.

Grid Cell Path Integration For Movement-Based Visual Object Recognition

This paper demonstrates the implementation of a sensorimotor network that uses grid-cell computations to process a sequence of visual inputs, specifically a sequence of image patches from the MNIST dataset. The network is able to classify novel digits (as well as perform other tasks) in a way that is robust to the specific sequence over which the visual space is sampled, a challenging setting for typical machine learning approaches. The work builds on our previous paper, “Locations in the Neocortex."

Sources

Going Beyond the Point Neuron: Active Dendrites and Sparse Representations for Continual Learning

In this paper we investigate how dendritic properties can add value to ANNs in the context of continual learning, an area where ANNs suffer from catastrophic forgetting

Sources

How Can We Be So Dense? The Benefits of Using Highly Sparse Representations

In this paper we discuss inherent benefits of high dimensional sparse representations. We focus on robustness and sensitivity to interference. These are central issues with today’s neural network systems where even small and large perturbations can cause dramatic changes to a network’s output.

Sources

Locations in the Neocortex: A Theory of Sensorimotor Object Recognition Using Cortical Grid Cells

This paper provides an implementation for a location layer with grid-like modules that encode object-specific locations. This layer is incorpated into a network with an input layer and simulations show how the model can learn many complex objects and later infer which learned object is being sensed.

Sources

A Theory of How Columns in the Neocortex Enable Learning the Structure of the World

This paper proposes a network model composed of columns and layers that performs robust object learning and recognition. The model introduces a new feature to cortical columns, location information, which is represented relative to the object being sensed. Pairing sensory features with locations is a requirement for modeling objects and therefore must occur somewhere in the neocortex. We propose it occurs in every column in every region.

Sources

The HTM Spatial Pooler – a neocortical algorithm for online sparse distributed coding

This paper describes an important component of HTM, the HTM spatial pooler, which is a neurally inspired algorithm that learns sparse distributed representations online. Written from a neuroscience perspective, the paper demonstrates key computational properties of HTM spatial pooler.

Sources

Evaluating Real-time Anomaly Detection Algorithms - the Numenta Anomaly Benchmark

14th IEEE ICMLA 2015 - This paper discusses how we should think about anomaly detection for streaming applications. It introduces a new open-source benchmark for detecting anomalies in real-time, time-series data.

Sources

Unsupervised Real-Time Anomaly Detection for Streaming Data

This paper discusses the requirements necessary for real-time anomaly detection in streaming data, and demonstrates how Numenta's online sequence memory algorithm, HTM, meets those requirements. It presents detailed results using the Numenta Anomaly Benchmark (NAB), the first open-source benchmark designed for testing real-time anomaly detection algorithms.

Sources

Why Neurons Have Thousands of Synapses, A Theory of Sequence Memory in Neocortex

Foundational paper describing core HTM theory for sequence memory and its relationship to the neocortex. Written with a neuroscience perspective, the paper explains why neurons need so many synapses and how networks of neurons can form a powerful sequence learning mechanism.

Sources

Owner
Numenta
Biologically inspired machine intelligence
Numenta
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022