Ensembling Off-the-shelf Models for GAN Training

Overview

Vision-aided GAN

video (3m) | website | paper







Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN training? If so, with so many models to choose from, which one(s) should be selected, and in what manner are they most effective?

We find that pretrained computer vision models can significantly improve performance when used in an ensemble of discriminators. We propose an effective selection mechanism, by probing the linear separability between real and fake samples in pretrained model embeddings, choosing the most accurate model, and progressively adding it to the discriminator ensemble. Our method can improve GAN training in both limited data and large-scale settings.

Ensembling Off-the-shelf Models for GAN Training
Nupur Kumari, Richard Zhang, Eli Shechtman, Jun-Yan Zhu
arXiv 2112.09130, 2021

Quantitative Comparison


Our method outperforms recent GAN training methods by a large margin, especially in limited sample setting. For LSUN Cat, we achieve similar FID as StyleGAN2 trained on the full dataset using only $0.7%$ of the dataset. On the full dataset, our method improves FID by 1.5x to 2x on cat, church, and horse categories of LSUN.

Example Results

Below, we show visual comparisons between the baseline StyleGAN2-ADA and our model (Vision-aided GAN) for the same randomly sample latent code.

Interpolation Videos

Latent interpolation results of models trained with our method on AnimalFace Cat (160 images), Dog (389 images), and Bridge-of-Sighs (100 photos).


Requirements

  • 64-bit Python 3.8 and PyTorch 1.8.0 (or later). See https://pytorch.org/ for PyTorch install instructions.
  • Cuda toolkit 11.0 or later.
  • python libraries: see requirements.txt
  • StyleGAN2 code relies heavily on custom PyTorch extensions. For detail please refer to the repo stylegan2-ada-pytorch

Setting up Off-the-shelf Computer Vision models

CLIP(ViT): we modify the model.py function to return intermediate features of the transformer model. To set up follow these steps.

git clone https://github.com/openai/CLIP.git
cp vision-aided-gan/training/clip_model.py CLIP/clip/model.py
cd CLIP
python setup.py install

DINO(ViT): model is automatically downloaded from torch hub.

VGG-16: model is automatically downloaded.

Swin-T(MoBY): Create a pretrained-models directory and save the downloaded model there.

Swin-T(Object Detection): follow the below step for setup. Download the model here and save it in the pretrained-models directory.

git clone https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
cd Swin-Transformer-Object-Detection
pip install mmcv-full==1.3.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
python setup.py install

for more details on mmcv installation please refer here

Swin-T(Segmentation): follow the below step for setup. Download the model here and save it in the pretrained-models directory.

git clone https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation.git
cd Swin-Transformer-Semantic-Segmentation
python setup.py install

Face Parsing:download the model here and save in the pretrained-models directory.

Face Normals:download the model here and save in the pretrained-models directory.

Pretrained Models

Our final trained models can be downloaded at this link

To generate images:

python generate.py --outdir=out --trunc=1 --seeds=85,265,297,849 --network=<network.pkl>

The output is stored in out directory controlled by --outdir. Our generator architecture is same as styleGAN2 and can be similarly used in the Python code as described in stylegan2-ada-pytorch.

model evaluation:

python calc_metrics.py --network <network.pkl> --metrics fid50k_full --data <dataset> --clean 1

We use clean-fid library to calculate FID metric. For LSUN Church and LSUN Horse, we calclate the full real distribution statistics. For details on calculating the real distribution statistics, please refer to clean-fid. For default FID evaluation of StyleGAN2-ADA use clean=0.

Datasets

Dataset preparation is same as given in stylegan2-ada-pytorch. Example setup for LSUN Church

LSUN Church

git clone https://github.com/fyu/lsun.git
cd lsun
python3 download.py -c church_outdoor
unzip church_outdoor_train_lmdb.zip
cd ../vision-aided-gan
python dataset_tool.py --source <path-to>/church_outdoor_train_lmdb/ --dest <path-to-datasets>/church1k.zip --max-images 1000  --transform=center-crop --width=256 --height=256

datasets can be downloaded from their repsective websites:

FFHQ, LSUN Categories, AFHQ, AnimalFace Dog, AnimalFace Cat, 100-shot Bridge-of-Sighs

Training new networks

model selection: returns the computer vision model with highest linear probe accuracy for the best FID model in a folder or the given network file.

python model_selection.py --data mydataset.zip --network  <mynetworkfolder or mynetworkpklfile>

example training command for training with a single pretrained network from scratch

python train.py --outdir=training-models/ --data=mydataset.zip --gpus 2 --metrics fid50k_full --kimg 25000 --cfg paper256 --cv input-dino-output-conv_multi_level --cv-loss multilevel_s --augcv ada --ada-target-cv 0.3 --augpipecv bgc --batch 16 --mirror 1 --aug ada --augpipe bgc --snap 25 --warmup 1  

Training configuration corresponding to training with vision-aided-loss:

  • --cv=input-dino-output-conv_multi_level pretrained network and its configuration.
  • --warmup=0 should be enabled when training from scratch. Introduces our loss after training with 500k images.
  • --cv-loss=multilevel what loss to use on pretrained model based discriminator.
  • --augcv=ada performs ADA augmentation on pretrained model based discriminator.
  • --augcv=diffaugment-<policy> performs DiffAugment on pretrained model based discriminator with given poilcy.
  • --augpipecv=bgc ADA augmentation strategy. Note: cutout is always enabled.
  • --ada-target-cv=0.3 adjusts ADA target value for pretrained model based discriminator.
  • --exact-resume=0 enables exact resume along with optimizer state.

Miscellaneous configurations:

  • --appendname='' additional string to append to training directory name.
  • --wandb-log=0 enables wandb logging.
  • --clean=0 enables FID calculation using clean-fid if the real distribution statistics are pre-calculated.

Run python train.py --help for more details and the full list of args.

References

@article{kumari2021ensembling,
  title={Ensembling Off-the-shelf Models for GAN Training},
  author={Kumari, Nupur and Zhang, Richard and Shechtman, Eli and Zhu, Jun-Yan},
  journal={arXiv preprint arXiv:2112.09130},
  year={2021}
}

Acknowledgments

We thank Muyang Li, Sheng-Yu Wang, Chonghyuk (Andrew) Song for proofreading the draft. We are also grateful to Alexei A. Efros, Sheng-Yu Wang, Taesung Park, and William Peebles for helpful comments and discussion. Our codebase is built on stylegan2-ada-pytorch and DiffAugment.

Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022