QuALITY: Question Answering with Long Input Texts, Yes!

Related tags

Deep Learningquality
Overview

QuALITY: Question Answering with Long Input Texts, Yes!

Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, Angelica Chen, Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel R. Bowman (* = equal contribution)

Data link

Download QuALITY v0.9 (zip).

Paper preprint

You can read the paper here.

Data README

Here are the explanations to the fields in the jsonl file. Each json line corresponds to the set of validated questions, corresponding to one article, written by one writer.

  • article_id: String. A five-digit number uniquely identifying the article. In each split, there are exactly two lines containing the same article_id, because two writers wrote questions for the same article.
  • set_unique_id: String. The unique ID corresponding to the set of questions, which corresponds to the line of json. Each set of questions is written by the same writer.
  • batch_num: String. The batch number. Our data collection is split in two groups, and there are three batches in each group. [i][j] means the j-th batch in the i-th group. For example, 23 corresponds to the third batch in the second group.
  • writer_id: String. The anonymized ID of the writer who wrote this set of questions.
  • source: String. The source of the article.
  • title: String. The title of the article.
  • author: String. The author of the article.
  • topic: String. The topic of the article.
  • url: String. The URL of the original unprocessed source article.
  • license: String. The license information for the article.
  • article: String. The HTML of the article. A script that converts HTML to plain texts is provided.
  • questions: A list of dictionaries explained below. Each line of json has a different number of questions because some questions were removed following validation.

As discussed, the value of questions is a list of dictionaries. Each dictionary has the following fields.

  • question: The question.
  • options: A list of four answer options.
  • gold_label: The correct answer, defined by a majority vote of 3 or 5 annotators + the original writer's label. The number corresponds to the option number (1-indexed) in options.
  • writer_label: The label the writer provided. The number corresponds to the option number (1-indexed) in options.
  • validation: A list of dictionaries containing the untimed validation results. Each dictionary contains the following fields.
    • untimed_annotator_id: The anonymized annotator IDs corresponding to the untimed validation results shown in untimed_answer.
    • untimed_answer: The responses in the untimed validation. Each question in the training set is annotated by three workers in most cases, and each question in the dev/test sets is annotated by five cases in most cases (see paper for exceptions).
    • untimed_eval1_answerability: The responses (represented numerically) to the first eval question in untimed validation. We asked the raters: “Is the question answerable and unambiguous?” The values correspond to the following choices:
      • 1: Yes, there is a single answer choice that is the most correct.
      • 2: No, two or more answer choices are equally correct.
      • 3: No, it is unclear what the question is asking, or the question or answer choices are unrelated to the passage.
    • untimed_eval2_context: The responses (represented numerically) to the second eval question in untimed validation. We asked the raters: “How much of the passage/text is needed as context to answer this question correctly?” The values correspond to the following choices:
      • 1: Only a sentence or two of context.
      • 2: At least a long paragraph or two of context.
      • 3: At least a third of the passage for context.
      • 4: Most or all of the passage for context.
    • untimed_eval3_distractor: The responses to the third eval question in untimed validation. We asked the raters: “Which of the options that you did not select was the best "distractor" item (i.e., an answer choice that you might be tempted to select if you hadn't read the text very closely)?” The numbers correspond to the option numbers (1-indexed).
  • speed_validation: A list of dictionaries containing the speed validation results. Each dictionary contains the following fields.
    • speed_annotator_id: The anonymized annotator IDs corresponding to the speed annotation results shown in speed_answer.
    • speed_answer: The responses in the speed validation. Each question is annotated by five workers.
  • difficult: A binary value. 1 means that less than 50% of the speed annotations answer the question correctly, so we include this question in the hard subset. Otherwise, the value is 0. In our evaluations, we report one accuracy figure for the entire dataset, and a second for the difficult=1 subset.

Validation criteria for the questions

  • More than 50% of annotators answer the question correctly in the untimed setting. That is, more than 50% of the untimed_answer annotations agree with gold_label (defined as the majority vote of validators' annotations together with the writer's provided label).
  • More than 50% of annotators think that the question is unambiguous and answerable. That is, more than 50% of the untimed_eval1_answerability annotations have 1's.

What are the hard questions?

  • More than 50% of annotators answer the question correctly in the untimed setting. That is, more than 50% of the untimed_answer annotations agree with gold_label.
  • More than 50% of annotators think that the question is unambiguous and answerable. That is, more than 50% of the untimed_eval1_answerability annotations have 1's.
  • More than 50% of annotators answer the question incorrectly in the speed validaiton setting. That is, more than 50% of the speed_answer annotations are incorrect.

Test set

The annotations for questions in the test set will not be released. We are currently working on a leaderboard. Stay tuned for an update by early January!

Code

The code for our baseline models will be released soon. Stay tuned for an update by early January!

Citation

@article{pang2021quality,
  title={{QuALITY}: Question Answering with Long Input Texts, Yes!},
  author={Pang, Richard Yuanzhe and Parrish, Alicia and Joshi, Nitish and Nangia, Nikita and Phang, Jason and Chen, Angelica and Padmakumar, Vishakh and Ma, Johnny and Thompson, Jana and He, He and Bowman, Samuel R.},
  journal={arXiv preprint arXiv:2112.08608},
  year={2021}
}

Contact

{yzpang, alicia.v.parrish}@nyu.edu

Owner
ML² AT CILVR
The Machine Learning for Language Group at NYU CILVR
ML² AT CILVR
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022