Automated question generation and question answering from Turkish texts using text-to-text transformers

Overview
citation

If you use this software in your work, please cite as:

@article{akyon2021automated,
  title={Automated question generation and question answering from Turkish texts using text-to-text transformers},
  author={Akyon, Fatih Cagatay and Cavusoglu, Devrim and Cengiz, Cemil and Altinuc, Sinan Onur and Temizel, Alptekin},
  journal={arXiv preprint arXiv:2111.06476},
  year={2021}
}
install
git clone https://github.com/obss/turkish-question-generation.git
cd turkish-question-generation
pip install -r requirements.txt
train
  • start a training using args:
python run.py --model_name_or_path google/mt5-small  --output_dir runs/exp1 --do_train --do_eval --tokenizer_name_or_path mt5_qg_tokenizer --per_device_train_batch_size 4 --gradient_accumulation_steps 2 --learning_rate 1e-4 --seed 42 --save_total_limit 1
python run.py config.json
python run.py config.yaml
evaluate
  • arrange related params in config:
do_train: false
do_eval: true
eval_dataset_list: ["tquad2-valid", "xquad.tr"]
prepare_data: true
mt5_task_list: ["qa", "qg", "ans_ext"]
mt5_qg_format: "both"
no_cuda: false
  • start an evaluation:
python run.py config.yaml
neptune
  • install neptune:
pip install neptune-client
  • download config file and arrange neptune params:
run_name: 'exp1'
neptune_project: 'name/project'
neptune_api_token: 'YOUR_API_TOKEN'
  • start a training:
python train.py config.yaml
wandb
  • install wandb:
pip install wandb
  • download config file and arrange wandb params:
run_name: 'exp1'
wandb_project: 'turque'
  • start a training:
python train.py config.yaml
finetuned checkpoints
Name Model data
train
params
(M)
model size
(GB)
turque-s1 mt5-small tquad2-train+tquad2-valid+xquad.tr 60M 1.2GB
mt5-small-3task-both-tquad2 mt5-small tquad2-train 60M 1.2GB
mt5-small-3task-prepend-tquad2 mt5-small tquad2-train 60M 1.2GB
mt5-base-3task-both-tquad2 mt5-base tquad2-train 220M 2.3GB
format
  • answer extraction:

input:

Osman Bey 1258 yılında Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi." ">
"
      
        Osman Bey 1258 yılında Söğüt’te doğdu. 
       
         Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

       
      

target:


    
      1258 
     
       Söğüt’te 
      

      
     
    
  • question answering:

input:

"question: Osman Bey nerede doğmuştur? context: Osman Bey 1258 yılında Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

target:

"Söğüt’te"
  • question generation (prepend):

input:

"answer: Söğüt’te context: Osman Bey 1258 yılında Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

target:

"Osman Bey nerede doğmuştur?"
  • question generation (highlight):

input:

Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi." ">
"generate question: Osman Bey 1258 yılında 
     
       Söğüt’te 
      
        doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

      
     

target:

"Osman Bey nerede doğmuştur?"
  • question generation (both):

input:

Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi." ">
"answer: Söğüt’te context: Osman Bey 1258 yılında 
     
       Söğüt’te 
      
        doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

      
     

target:

"Osman Bey nerede doğmuştur?"
paper results
BERTurk-base and mT5-base QA evaluation results for TQuADv2 fine-tuning.

mT5-base QG evaluation results for single-task (ST) and multi-task (MT) for TQuADv2 fine-tuning.

TQuADv1 and TQuADv2 fine-tuning QG evaluation results for multi-task mT5 variants. MT-Both means, mT5 model is fine-tuned with ’Both’ input format and in a multi-task setting.

paper configs

You can find the config files used in the paper under configs/paper.

contributing

Before opening a PR:

  • Install required development packages:
pip install "black==21.7b0" "flake8==3.9.2" "isort==5.9.2"
  • Reformat with black and isort:
black . --config pyproject.toml
isort .
You might also like...
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Baseline code for Korean open domain question answering(ODQA)
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018) dataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as a source of distractors.

CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

BERT-based Financial Question Answering System
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Owner
Open Business Software Solutions
Open Source for Open Business
Open Business Software Solutions
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Refactored version of FastSpeech2

Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

ILJI CHOI 10 May 26, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Stanford CoreNLP provides a set of natural language analysis tools written in Java

Stanford CoreNLP Stanford CoreNLP provides a set of natural language analysis tools written in Java. It can take raw human language text input and giv

Stanford NLP 8.8k Jan 07, 2023
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea

Philipp Schmid 161 Dec 16, 2022
Outreachy TFX custom component project

Schema Curation Custom Component Outreachy TFX custom component project This repo contains the code for Schema Curation Custom Component made as a par

Robert Crowe 5 Jul 16, 2021
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t

EleutherAI 6.7k Dec 28, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023