A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

Overview

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

The official pytorch implementation of the paper "Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis", the paper can be found here.

0. Data

The datasets used in the paper can be found at link.

After testing on over 20 datasets with each has less than 100 images, this GAN converges on 80% of them. I still cannot summarize an obvious pattern of the "good properties" for a dataset which this GAN can converge on, please feel free to try with your own datasets.

1. Description

The code is structured as follows:

  • models.py: all the models' structure definition.

  • operation.py: the helper functions and data loading methods during training.

  • train.py: the main entry of the code, execute this file to train the model, the intermediate results and checkpoints will be automatically saved periodically into a folder "train_results".

  • eval.py: generates images from a trained generator into a folder, which can be used to calculate FID score.

  • benchmarking: the functions we used to compute FID are located here, it automatically downloads the pytorch official inception model.

  • lpips: this folder contains the code to compute the LPIPS score, the inception model is also automatically download from official location.

  • scripts: this folder contains many scripts you can use to play around the trained model. Including:

    1. style_mix.py: style-mixing as introduced in the paper;
    2. generate_video.py: generating a continuous video from the interpolation of generated images;
    3. find_nearest_neighbor.py: given a generated image, find the closest real-image from the training set;
    4. train_backtracking_one.py: given a real-image, find the latent vector of this image from a trained Generator.

2. How to run

Place all your training images in a folder, and simply call

python train.py --path /path/to/RGB-image-folder

You can also see all the training options by:

python train.py --help

The code will automatically create a new folder (you have to specify the name of the folder using --name option) to store the trained checkpoints and intermediate synthesis results.

Once finish training, you can generate 100 images (or as many as you want) by:

cd ./train_results/name_of_your_training/
python eval.py --n_sample 100 

3. Pre-trained models

The pre-trained models and the respective code of each model are shared here.

You can also use FastGAN to generate images with a pre-packaged Docker image, hosted on the Replicate registry: https://beta.replicate.ai/odegeasslbc/FastGAN

4. Important notes

  1. The provided code is for research use only.

  2. Different model and training configurations are needed on different datasets. You may have to tune the hyper-parameters to get the best results on your own datasets.

    2.1. The hyper-parameters includes: the augmentation options, the model depth (how many layers), the model width (channel numbers of each layer). To change these, you have to change the code in models.py and train.py directly.

    2.2. Please check the code in the shared pre-trained models on how each of them are configured differently on different datasets. Especially, compare the models.py for ffhq and art datasets, you will get an idea on what chages could be made on different datasets.

5. Other notes

  1. The provided scripts are not well organized, contributions are welcomed to clean them.
  2. An third-party implementation of this paper can be found here, where some other techniques are included. I suggest you try both implementation if you find one of them does not work.
Owner
Bingchen Liu
Bingchen Liu
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022