Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Overview

OFA

[Paper] [Blog] [Colab] [Spaces]

Overview

OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework. For more information, please refer to our paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework.

News

  • 2022.2.13: Released the demo of image captioning. Have fun! Hugging Face Spaces
  • 2022.2.11: Released the Colab notebook for image captioning . Enjoy!
  • 2022.2.11: Released the pretrained checkpoint of OFA-Large and the complete (2-staged) finetuning code for image captioning.
  • 2022.2.10: Released the inference code & finetuned checkpoint for image captioning, which can reproduce the results on COCO Karparthy test split (149.6 CIDEr)

TODO

  • To release finetuning and inference codes for multimodal downstream tasks soon, including image captioning, VQA, text-to-image generation, SNLI-VE, Referring expression, comprehension, etc.
  • To release codes for pretraining soon.

Approach

approach

Requirements

  • python 3.7.4
  • pytorch 1.8.1
  • torchvision 0.9.1
  • JAVA 1.8 (for COCO evaluation)

Installation

git clone https://github.com/OFA-Sys/OFA
pip install -r requirements.txt

Datasets and Checkpoints

See datasets.md and checkpoints.md.

Pretraining

To release soon:)

Finetuning & Inference

Below we provide methods for fintuning and inference on different downstream tasks.

Caption

  1. Download data and files and put them in the correct directory
  2. Train
cd run_scripts/caption
nohup sh train_caption_stage1.sh &  # stage1, train with cross-entropy loss
nohup sh train_caption_stage2.sh &  # stage2, load the best ckpt of stage1 and train with CIDEr optimization 
  1. Inference
cd run_scripts/caption ; sh evaluate_caption.sh  # inference & evaluate

Gallery

Below we provide examples of OFA in text-to-image generation and open-ended VQA. Also, we demonstrate its performance in unseen task (Grounded QA) as well as unseen domain (Visual Grounding on images from unseen domains).

Text-to-Image Generation (normal query)

t2i_normal

Text-to-Image Generation (counterfactual query)

t2i_counterfactual

Open-Ended VQA

open_vqa

Grounded QA (unseen task)

grounded_qa

Viusal Grounding (unseen domain)

vg

Citation

Please cite our paper if you find it helpful :)

@article{wang2022OFA,
  title={Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework},
  author={Wang, Peng and Yang, An and Men, Rui and Lin, Junyang and Bai, Shuai and Li, Zhikang and Ma, Jianxin and Zhou, Chang and Zhou, Jingren and Yang, Hongxia},
  journal={arXiv e-prints},
  pages={arXiv--2202},
  year={2022}
}

Related Codebase

License

Apache-2.0

Owner
OFA Sys
OFA Sys
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Saeed Lotfi 28 Dec 12, 2022
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Christian Reiser 373 Dec 20, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022