Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

Related tags

Computer VisionRaVAEn
Overview

RaVAEn

Project sample The RaVÆn system
We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment. It flags changed areas to prioritise for downlink, shortening the response time. We show that the proposed method outperforms pixel-wise baselines and we test it on resource-limited hardware. We also release the annotated dataset of extreme events. Work conducted at the FDL Europe 2021.

NeurIPS workshop papervideo from AI+HADR'21Quick Colab Example


Unsupervised Change Detection of Extreme Events Using ML On-Board

Flooding event example

Abstract: In this paper, we introduce RaVAEn, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment. Applications such as disaster management enormously benefit from the rapid availability of satellite observations. Traditionally, data analysis is performed on the ground after all data is transferred - downlinked - to a ground station. Constraint on the downlink capabilities therefore affects any downstream application. In contrast, RaVAEn pre-processes the sampled data directly on the satellite and flags changed areas to prioritise for downlink, shortening the response time. We verified the efficacy of our system on a dataset composed of time series of catastrophic events - which we plan to release alongside this publication - demonstrating that RaVAEn outperforms pixel-wise baselines. Finally we tested our approach on resource-limited hardware for assessing computational and memory limitations.

Dataset

The full annotated dataset used for evaluation is hosted on Google Drive here. It contains 5 locations for each of the Landslide, Hurricane, Fire events and 4 locations for Floods events. For more details see the paper (we use the Sentinel-2 mission, level L1C data).

Map of the events

For dataset inspection use the prepared Colab Dataset Exploration demo .

Code examples

Install

# This will create a ravaen_env conda environment:
make requirements
conda activate ravaen_env
# Add these to open the prepared notebooks:
conda install nb_conda
jupyter notebook
# This will open an interactive notebook in your browser where you can navigate to the training or inference demo

Inference

To start using our model for inference, it's best to start with the prepared Colab Inference demo , which downloads our annotated dataset and evaluates a pre-trained model on a selected event type.

# Check possible parameters with:
!python3 -m scripts.evaluate_model --help 

# Example evaluation script used for the paper results for "small size" VAE model (remeber to adjust paths to the dataset and to the saved model checkpoints)
./bash/eval_run_papers_v3_VAE_128_D_small.sh

Training

For a fast demo on how to train these models on a custom folder of locations, check the Training demo as that presents an easy entry point to this repository. To reproduce the same training process as reported in the paper, you will need to download the whole WorldFloods dataset (see here) and prepare the same folder structure as we chose for the validation datasets.

# Check possible parameters with:
!python3 -m scripts.train_model --help

# Run the same training script used for the paper results for "small size" VAE model (remember to adjust the paths to the training datasets)
./bash/train_run_papers_v3_VAE_128_small_D.sh

Generality of the solution

Hurricane event example

Name "RaVAEn"

Our project is named after the two ravens in Norse mythology who are helping spirits of the god Odin and also highlights the usage of a Variational Auto-Encoder (VAE) as the main model:

Two ravens sit on his (Odin’s) shoulders and whisper all the news which they see and hear into his ear; they are called Huginn and Muninn. He sends them out in the morning to fly around the whole world, and by breakfast they are back again. Thus, he finds out many new things and this is why he is called ‘raven-god’ (hrafnaguð). (source)

Citation

If you find RaVAEn useful in your research, please consider citing the following paper:

@inproceedings{ravaen2021,
  title = {Unsupervised {Change} {Detection} of {Extreme} {Events} {Using} {ML} {On}-{Board}},
  url = {http://arxiv.org/abs/2111.02995},
  booktitle = {Artificial {Intelligence} for {Humanitarian} {Assistance} and {Disaster} {Response} {Workshop}, 35th {Conference} on {Neural} {Information} {Processing} {Systems} ({NeurIPS} 2021), {Vancouver}, {Canada}},
  author = {Růžička, Vít and Vaughan, Anna and De Martini, Daniele and Fulton, James and Salvatelli, Valentina and Bridges, Chris and Mateo-Garcia, Gonzalo and Zantedeschi, Valentina},
  month = nov,
  year = {2021},
  note = {arXiv: 2111.02995}
}
Owner
SpaceML
SpaceML
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

188 Dec 28, 2022
A curated list of promising OCR resources

Call for contributor(paper summary,dataset generation,algorithm implementation and any other useful resources) awesome-ocr A curated list of promising

wanghaisheng 1.6k Jan 04, 2023
Recognizing cropped text in natural images.

ASTER: Attentional Scene Text Recognizer with Flexible Rectification ASTER is an accurate scene text recognizer with flexible rectification mechanism.

Baoguang Shi 681 Jan 02, 2023
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
MXNet OCR implementation. Including text recognition and detection.

insightocr Text Recognition Accuracy on Chinese dataset by caffe-ocr Network LSTM 4x1 Pooling Gray Test Acc SimpleNet N Y Y 99.37% SE-ResNet34 N Y Y 9

Deep Insight 99 Nov 01, 2022
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
It is a image ocr tool using the Tesseract-OCR engine with the pytesseract package and has a GUI.

OCR-Tool It is a image ocr tool made in Python using the Tesseract-OCR engine with the pytesseract package and has a GUI. This is my second ever pytho

Khant Htet Aung 4 Jul 11, 2022
Textboxes : Image Text Detection Model : python package (tensorflow)

shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl

Jayne Shin (신재인) 91 Dec 15, 2022
Read Japanese manga inside browser with selectable text.

mokuro Read Japanese manga with selectable text inside a browser. See demo: https://kha-white.github.io/manga-demo mokuro_demo.mp4 Demo contains excer

Maciej Budyś 170 Dec 27, 2022
Discord QR Scam Code Generator + Token grab mobile device.

A Python script that automatically generates a Nitro scam QR code and grabs the Discord token when scanned.

Visual 9 Nov 22, 2022
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
Let's explore how we can extract text from forms

Form Segmentation Let's explore how we can extract text from any forms / scanned pages. Objectives The goal is to find an algorithm that can extract t

Philip Doxakis 42 Jun 05, 2022
Regions sanitàries (RS), Sectors Sanitàris (SS) i Àrees Bàsiques de Salut (ABS) de Catalunya

Regions sanitàries (RS), Sectors Sanitaris (SS), Àrees de Gestió Assistencial (AGA) i Àrees Bàsiques de Salut (ABS) de Catalunya Fitxers GeoJSON de le

Glòria Macià Muñoz 2 Jan 23, 2022
YOLOv5 in DOTA with CSL_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)

YOLOv5_DOTA_OBB YOLOv5 in DOTA_OBB dataset with CSL_label.(Oriented Object Detection) Datasets and pretrained checkpoint Datasets : DOTA Pretrained Ch

1.1k Dec 30, 2022
Super Mario Game With Python

Super_Mario Hello all this is a simple python program which tries to use our body as a controller for the super mario game Here I have used media pipe

Adarsh Badagala 219 Nov 25, 2022
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022