Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Overview

Intro

Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and Systems (RSS 2022)

[Project page] [Paper]

Dependencies

Set conda environment

conda create -n quadruped_nav python=3.8
conda activate quadruped_nav

Install torch(1.10.1), numpy(1.21.2), matplotlib, scipy, ruamel.yaml

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
conda install numpy=1.21.2
conda install matplotlib
conda install scipy
pip install ruamel.yaml

Install wandb and login. 'wandb' is a logging system similar to 'tensorboard'.

pip install wandb
wandb login

Install required python packages to compute Dynamic Time Warping in Parallel

pip install dtw-python
pip install fastdtw
pip install joblib

Install OMPL (Open Motion Planning Library). Python binding version of OMPL is used.

Download OMPL installation script in https://ompl.kavrakilab.org/installation.html.
chmod u+x install-ompl-ubuntu.sh
./install-ompl-ubuntu.sh --python

Simulator setup

RaiSim is used. Install it following the installation guide.

Then, set up RaisimGymTorch as following.

cd /RAISIM_DIRECTORY_PATH/raisimLib
git clone [email protected]:awesomericky/complex-env-navigation.git
cd complex-env-navigation
python setup.py develop

Path setup

Configure following paths. Parts that should be configured is set with TODO: PATH_SETUP_REQUIRED flag.

  1. Project directory
    • cfg['path']['home'] in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/test/cfg.yaml
  2. OMPL Python binding
    • OMPL_PYBIND_PATH in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/train/global_planner.py

Train model

Set logging: True in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/train/cfg.yaml, if you want to enable wandb logging.

Train Forward Dynamics Model (FDM).

  • Click 'c' to continue when pdb stops the code
  • To quit the training, click 'Ctrl + c' to call pdb. Then click 'q'.
  • Path of the trained velocity command tracking controller should be given with -tw flag.
  • Evaluations of FDM are visualized in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/trajectory_prediction_plot.
python raisimGymTorch/env/envs/train/FDM_train.py -tw /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/data/command_tracking_flat/final/full_16200.pt

Download data to train Informed Trajectory Sampler (386MB) [link]

# Unzip the downloaded zip file and move it to required path.
unzip analytic_planner_data.zip
mv analytic_planner_data /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/.

Train Informed Trajectory Sampler (ITS)

  • Click 'c' to continue when pdb stops the code.
  • To quit the training, click 'Ctrl + c' to call pdb. Then click 'q'.
  • Path of the trained Forward Dynamics Model should be given with -fw flag.
python raisimGymTorch/env/envs/train/ITS_train.py -fw /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/data/FDM_train/XXX/full_XXX.pt

Run demo

Configure the trained weight paths (cfg['path']['FDM'] and cfg['path']['ITS']) in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/test/cfg.yaml. Parts that should be configured is set with TODO: WEIGHT_PATH_SETUP_REQUIRED flag.

Open RaiSim Unity to see the visualized simulation.

Run point-goal navigation with trained weight (click 'c' to continue when pdb stops the code)

python raisimGymTorch/env/envs/test/pgn_runner.py

Run safety-remote control with trained weight (click 'c' to continue when pdb stops the code)

python raisimGymTorch/env/envs/test/src_runner.py

To quit running the demo, click 'Ctrl + c' to call pdb. Then click 'q'.

Extra notes

  • This repository is not maintained anymore. If you have a question, send an email to [email protected].
  • We don't take questions regarding installation. If you install the dependencies successfully, you can easily run this.
  • For the codes in rsc/, ANYbotics' license is applied. MIT license otherwise.
  • More details of the provided velocity command tracking controller for quadruped robots in flat terrain can be found in this paper and repository.

Cite

@INPROCEEDINGS{Kim-RSS-22, 
    AUTHOR    = {Yunho Kim AND Chanyoung Kim AND Jemin Hwangbo}, 
    TITLE     = {Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2022}, 
    ADDRESS   = {New York, USA}, 
    MONTH     = {June}
} 
Owner
Yunho Kim
Yunho Kim
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023