Official implementation of "Path Planning using Neural A* Search" (ICML-21)

Overview

Path Planning using Neural A* Search (ICML 2021)

This is a repository for the following paper:

Ryo Yonetani*, Tatsunori Taniai*, Mohammadamin Barekatain, Mai Nishimura, Asako Kanezaki, "Path Planning using Neural A* Search", ICML, 2021 [paper] [project page]

TL;DR

Neural A* is a novel data-driven search-based planner that consists of a trainable encoder and a differentiable version of A* search algorithm called differentiable A* module. Neural A* learns from demonstrations to improve the trade-off between search optimality and efficiency in path planning and also to enable the planning directly on raw image inputs.

A* search Neural A* search
astar neural_astar

Overview

  • This branch presents a minimal example for training and evaluating Neural A* on shortest path problems.
  • For reproducing experiments in our ICML'21 paper, please refer to icml2021 branch.
  • For creating datasets used in our experiments, please visit planning datasets repository.

Getting started

  • The code has been tested on Ubuntu 18.04.5 LTS.
  • Try Neural A* on Google Colab! Open In Colab
  • See also docker-compose.yml and docker/Dockerfile to reproduce our environment.

FAQs

Data format (c.f. #1 (comment))

The datafile mazes_032_moore_c8.npz was created using our data generation script in a separate repository https://github.com/omron-sinicx/planning-datasets.

In the data, arr_0 - arr_3 are 800 training, arr_4 - arr_7 are 100 validation, and arr_8 - arr_11 are 100 test data, which contain the following information (see also https://github.com/omron-sinicx/planning-datasets/blob/68e182801fd8cbc4c25ccdc1b14b8dd99d9bbc73/generate_spp_instances.py#L50-L61):

  • arr_0, arr_4, arr_8: binary input maps
  • arr_1, arr_5, arr_9: one-hot goal maps
  • arr_2, arr_6, arr_10: optimal directions (among eight directions) to reach the goal
  • arr_3, arr_7, arr_11: shortest distances to the goal

For each problem instance, the start location is generated randomly when __getitem__ is called:

start_map = self.get_random_start_map(opt_dist)

Citation

# ICML2021 version
@InProceedings{pmlr-v139-yonetani21a,
  title =      {Path Planning using Neural A* Search},
  author    = {Ryo Yonetani and
               Tatsunori Taniai and
               Mohammadamin Barekatain and
               Mai Nishimura and
               Asako Kanezaki},
  booktitle =      {Proceedings of the 38th International Conference on Machine Learning},
  pages =      {12029--12039},
  year =      {2021},
  editor =      {Meila, Marina and Zhang, Tong},
  volume =      {139},
  series =      {Proceedings of Machine Learning Research},
  month =      {18--24 Jul},
  publisher =    {PMLR},
  pdf =      {http://proceedings.mlr.press/v139/yonetani21a/yonetani21a.pdf},
  url =      {http://proceedings.mlr.press/v139/yonetani21a.html},
}

# arXiv version
@article{DBLP:journals/corr/abs-2009-07476,
  author    = {Ryo Yonetani and
               Tatsunori Taniai and
               Mohammadamin Barekatain and
               Mai Nishimura and
               Asako Kanezaki},
  title     = {Path Planning using Neural A* Search},
  journal   = {CoRR},
  volume    = {abs/2009.07476},
  year      = {2020},
  url       = {https://arxiv.org/abs/2009.07476},
  archivePrefix = {arXiv},
  eprint    = {2009.07476},
  timestamp = {Wed, 23 Sep 2020 15:51:46 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2009-07476.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Acknowledgments

This repository includes some code from RLAgent/gated-path-planning-networks [1] with permission of the authors and from martius-lab/blackbox-backprop [2].

References

Supplementary Data for Evolving Reinforcement Learning Algorithms

evolvingrl Supplementary Data for Evolving Reinforcement Learning Algorithms This dataset contains 1000 loss graphs from two experiments: 500 unique g

John Co-Reyes 42 Sep 21, 2022
Algorithms and data structures for educational, demonstrational and experimental purposes.

Algorithms and Data Structures (ands) Introduction This project was created for personal use mostly while studying for an exam (starting in the month

50 Dec 06, 2022
A lightweight, object-oriented finite state machine implementation in Python with many extensions

transitions A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+. Installa

4.7k Jan 01, 2023
It is a platform that implements some path planning algorithms.

PathPlanningAlgorithms It is a platform that implements some path planning algorithms. Main dependence: python3.7, opencv4.1.1.26 (for image show) Tip

5 Feb 24, 2022
FLIght SCheduling OPTimization - a simple optimization library for flight scheduling and related problems in the discrete domain

Fliscopt FLIght SCheduling OPTimization 🛫 or fliscopt is a simple optimization library for flight scheduling and related problems in the discrete dom

33 Dec 17, 2022
A collection of design patterns/idioms in Python

python-patterns A collection of design patterns and idioms in Python. Current Patterns Creational Patterns: Pattern Description abstract_factory use a

Sakis Kasampalis 36.2k Jan 05, 2023
This repository is an individual project made at BME with the topic of self-driving car simulator and control algorithm.

BME individual project - NEAT based self-driving car This repository is an individual project made at BME with the topic of self-driving car simulator

NGO ANH TUAN 1 Dec 13, 2021
The DarkRift2 networking framework written in Python 3

DarkRiftPy is Darkrift2 written in Python 3. The implementation is fully compatible with the original version. So you can write a client side on Python that connects to a Darkrift2 server written in

Anton Dobryakov 6 May 23, 2022
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.

Martin 1 Jan 01, 2022
This project consists of a collaborative filtering algorithm to predict movie reviews ratings from a dataset of Netflix ratings.

Collaborative Filtering - Netflix movie reviews Description This project consists of a collaborative filtering algorithm to predict movie reviews rati

Shashank Kumar 1 Dec 21, 2021
A pure Python implementation of a mixed effects random forest (MERF) algorithm

Mixed Effects Random Forest This repository contains a pure Python implementation of a mixed effects random forest (MERF) algorithm. It can be used, o

Manifold 199 Dec 06, 2022
PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks.

PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks. It is developed by the Multi-Agent Artificial Intel

21 Dec 20, 2022
Distributed algorithms, reimplemented for fun and practice

Distributed Algorithms Playground for reimplementing and experimenting with algorithms for distributed computing. Usage Running the code for Ring-AllR

Mahan Tourkaman 1 Oct 16, 2022
Python sample codes for robotics algorithms.

PythonRobotics Python codes for robotics algorithm. Table of Contents What is this? Requirements Documentation How to use Localization Extended Kalman

Atsushi Sakai 17.2k Jan 01, 2023
A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines

py-earth A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines algorithm, in the style of scikit-learn. The py-earth p

431 Dec 15, 2022
Code for generating alloy / disordered structures through the special quasirandom structure (SQS) algorithm

Code for generating alloy / disordered structures through the special quasirandom structure (SQS) algorithm

Bruno Focassio 1 Nov 10, 2021
This repository is not maintained

This repository is no longer maintained, but is being kept around for educational purposes. If you want a more complete algorithms repo check out: htt

Nic Young 2.8k Dec 30, 2022
This application solves sudoku puzzles using a backtracking recursive algorithm

This application solves sudoku puzzles using a backtracking recursive algorithm. The user interface is coded with Pygame to allow users to easily input puzzles.

Glenda T 0 May 17, 2022
A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

8QueensGenetic A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD. The project uses the Kivy cross-p

Ahmed Gad 16 Nov 13, 2022