Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

Related tags

Deep Learningi-Blurry
Overview

The Official Implementation of CLIB (Continual Learning for i-Blurry)

Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference
Hyunseo Koh*, Dahyun Kim*, Jung-Woo Ha, Jonghyun Choi
ICLR 2022 [Paper]
(* indicates equal contribution)

Overview

Abstract

Despite rapid advances in continual learning, a large body of research is devoted to improving performance in the existing setups. While a handful of work do propose new continual learning setups, they still lack practicality in certain aspects. For better practicality, we first propose a novel continual learning setup that is online, task-free, class-incremental, of blurry task boundaries and subject to inference queries at any moment. We additionally propose a new metric to better measure the performance of the continual learning methods subject to inference queries at any moment. To address the challenging setup and evaluation protocol, we propose an effective method that employs a new memory management scheme and novel learning techniques. Our empirical validation demonstrates that the proposed method outperforms prior arts by large margins.

Results

Results of CL methods on various datasets, for online continual learning on i-Blurry-50-10 split, measured by metric. For more details, please refer to our paper.

Methods CIFAR10 CIFAR100 TinyImageNet ImageNet
EWC++ 57.34±2.10 35.35±1.96 22.26±1.15 24.81
BiC 58.38±0.54 33.51±3.04 22.80±0.94 27.41
ER-MIR 57.28±2.43 35.35±1.41 22.10±1.14 20.48
GDumb 53.20±1.93 32.84±0.45 18.17±0.19 14.41
RM 23.00±1.43 8.63±0.19 5.74±0.30 6.22
Baseline-ER 57.46±2.25 35.61±2.08 22.45±1.15 25.16
CLIB 70.26±1.28 46.67±0.79 23.87±0.68 28.16

Getting Started

To set up the environment for running the code, you can either use the docker container, or manually install the requirements in a virtual environment.

Using Docker Container (Recommended)

We provide the Docker image khs8157/iblurry on Docker Hub for reproducing the results. To download the docker image, run the following command:

docker pull khs8157/iblurry:latest

After pulling the image, you may run the container via following command:

docker run --gpus all -it --shm-size=64gb -v /PATH/TO/CODE:/PATH/TO/CODE --name=CONTAINER_NAME khs8157/iblurry:latest bash

Replace the arguments written in italic with your own arguments.

Requirements

  • Python3
  • Pytorch (>=1.9)
  • torchvision (>=0.10)
  • numpy
  • pillow~=6.2.1
  • torch_optimizer
  • randaugment
  • easydict
  • pandas~=1.1.3

If not using Docker container, install the requirements using the following command

pip install -r requirements.txt

Running Experiments

Downloading the Datasets

CIFAR10, CIFAR100, and TinyImageNet can be downloaded by running the corresponding scripts in the dataset/ directory. ImageNet dataset can be downloaded from Kaggle.

Experiments Using Shell Script

Experiments for the implemented methods can be run by executing the shell scripts provided in scripts/ directory. For example, you may run CL experiments using CLIB method by

bash scripts/clib.sh

You may change various arguments for different experiments.

  • NOTE: Short description of the experiment. Experiment result and log will be saved at results/DATASET/NOTE.
    • WARNING: logs/results with the same dataset and note will be overwritten!
  • MODE: CL method to be applied. Methods implemented in this version are: [clib, er, ewc++, bic, mir, gdumb, rm]
  • DATASET: Dataset to use in experiment. Supported datasets are: [cifar10, cifar100, tinyimagenet, imagenet]
  • N_TASKS: Number of tasks. Note that corresponding json file should exist in collections/ directory.
  • N: Percentage of disjoint classes in i-blurry split. N=100 for full disjoint, N=0 for full blurry. Note that corresponding json file should exist in collections/ directory.
  • M: Blurry ratio of blurry classes in i-blurry split. Note that corresponding json file should exist in collections/ directory.
  • GPU_TRANSFORM: Perform AutoAug on GPU, for faster running.
  • USE_AMP: Use automatic mixed precision (amp), for faster running and reducing memory cost.
  • MEM_SIZE: Maximum number of samples in the episodic memory.
  • ONLINE_ITER: Number of model updates per sample.
  • EVAL_PERIOD: Period of evaluation queries, for calculating .

Citation

If you used our code or i-blurry setup, please cite our paper.

@inproceedings{koh2022online,
  title={Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference},
  author={Koh, Hyunseo and Kim, Dahyun and Ha, Jung-Woo and Choi, Jonghyun},
  booktitle={ICLR},
  year={2022}
}

License

Copyright (C) 2022-present NAVER Corp.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <https://www.gnu.org/licenses/>.
Owner
NAVER AI
Official account of NAVER CLOVA AI Lab, Korea No.1 Industrial AI Research Group
NAVER AI
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022