Generate text line images for training deep learning OCR model (e.g. CRNN)

Overview

Text Renderer

Generate text line images for training deep learning OCR model (e.g. CRNN). example

  • Modular design. You can easily add different components: Corpus, Effect, Layout.
  • Integrate with imgaug, see imgaug_example for usage.
  • Support render multi corpus on image with different effects. Layout is responsible for the layout between multiple corpora
  • Support apply effects on different stages of rendering process corpus_effects, layout_effects, render_effects.
  • Generate vertical text.
  • Support generate lmdb dataset which compatible with PaddleOCR, see Dataset
  • A web font viewer.
  • Corpus sampler: helpful to perform character balance

Documentation

Run Example

Run following command to generate images using example data:

git clone https://github.com/oh-my-ocr/text_renderer
cd text_renderer
python3 setup.py develop
pip3 install -r docker/requirements.txt
python3 main.py \
    --config example_data/example.py \
    --dataset img \
    --num_processes 2 \
    --log_period 10

The data is generated in the example_data/output directory. A labels.json file contains all annotations in follow format:

{
  "labels": {
    "000000000": "test",
    "000000001": "text2"
  },
  "sizes": {
    "000000000": [
      120,
      32 
    ],
    "000000001": [
      128,
      32 
    ]
  },
  "num-samples": 2
}

You can also use --dataset lmdb to store image in lmdb file, lmdb file contains follow keys:

  • num-samples
  • image-000000000
  • label-000000000
  • size-000000000

You can check config file example_data/example.py to learn how to use text_renderer, or follow the Quick Start to learn how to setup configuration

Quick Start

Prepare file resources

  • Font files: .ttf.otf.ttc
  • Background images of any size, either from your business scenario or from publicly available datasets (COCO, VOC)
  • Corpus: text_renderer offers a wide variety of text sampling methods, to use these methods, you need to consider the preparation of the corpus from two perspectives:
  1. The corpus must be in the target language for which you want to perform OCR recognition
  2. The corpus should meets your actual business needs, such as education field, medical field, etc.
  • Charset file [Optional but recommend]: OCR models in real-world scenarios (e.g. CRNN) usually support only a limited character set, so it's better to filter out characters outside the character set during data generation. You can do this by setting the chars_file parameter

You can download pre-prepared file resources for this Quick Start from here:

Save these resource files in the same directory:

workspace
├── bg
│ └── background.png
├── corpus
│ └── eng_text.txt
└── font
    └── simsun.ttf

Create config file

Create a config.py file in workspace directory. One configuration file must have a configs variable, it's a list of GeneratorCfg.

The complete configuration file is as follows:

import os
from pathlib import Path

from text_renderer.effect import *
from text_renderer.corpus import *
from text_renderer.config import (
    RenderCfg,
    NormPerspectiveTransformCfg,
    GeneratorCfg,
    SimpleTextColorCfg,
)

CURRENT_DIR = Path(os.path.abspath(os.path.dirname(__file__)))


def story_data():
    return GeneratorCfg(
        num_image=10,
        save_dir=CURRENT_DIR / "output",
        render_cfg=RenderCfg(
            bg_dir=CURRENT_DIR / "bg",
            height=32,
            perspective_transform=NormPerspectiveTransformCfg(20, 20, 1.5),
            corpus=WordCorpus(
                WordCorpusCfg(
                    text_paths=[CURRENT_DIR / "corpus" / "eng_text.txt"],
                    font_dir=CURRENT_DIR / "font",
                    font_size=(20, 30),
                    num_word=(2, 3),
                ),
            ),
            corpus_effects=Effects(Line(0.9, thickness=(2, 5))),
            gray=False,
            text_color_cfg=SimpleTextColorCfg(),
        ),
    )


configs = [story_data()]

In the above configuration we have done the following things:

  1. Specify the location of the resource file
  2. Specified text sampling method: 2 or 3 words are randomly selected from the corpus
  3. Configured some effects for generation
  4. Specifies font-related parameters: font_size, font_dir

Run

Run main.py, it only has 4 arguments:

  • config:Python config file path
  • dataset: Dataset format img or lmdb
  • num_processes: Number of processes used
  • log_period: Period of log printing. (0, 100)

All Effect/Layout Examples

Find all effect/layout config example at link

  • bg_and_text_mask: Three images of the same width are merged together horizontally, it can be used to train GAN model like EraseNet
Name Example
0 bg_and_text_mask bg_and_text_mask.jpg
1 char_spacing_compact char_spacing_compact.jpg
2 char_spacing_large char_spacing_large.jpg
3 color_image color_image.jpg
4 curve curve.jpg
5 dropout_horizontal dropout_horizontal.jpg
6 dropout_rand dropout_rand.jpg
7 dropout_vertical dropout_vertical.jpg
8 emboss emboss.jpg
9 extra_text_line_layout extra_text_line_layout.jpg
10 line_bottom line_bottom.jpg
11 line_bottom_left line_bottom_left.jpg
12 line_bottom_right line_bottom_right.jpg
13 line_horizontal_middle line_horizontal_middle.jpg
14 line_left line_left.jpg
15 line_right line_right.jpg
16 line_top line_top.jpg
17 line_top_left line_top_left.jpg
18 line_top_right line_top_right.jpg
19 line_vertical_middle line_vertical_middle.jpg
20 padding padding.jpg
21 perspective_transform perspective_transform.jpg
22 same_line_layout_different_font_size same_line_layout_different_font_size.jpg
23 vertical_text vertical_text.jpg

Contribution

  • Corpus: Feel free to contribute more corpus generators to the project, It does not necessarily need to be a generic corpus generator, but can also be a business-specific generator, such as generating ID numbers

Run in Docker

Build image

docker build -f docker/Dockerfile -t text_renderer .

Config file is provided by CONFIG environment. In example.py file, data is generated in example_data/output directory, so we map this directory to the host.

docker run --rm \
-v `pwd`/example_data/docker_output/:/app/example_data/output \
--env CONFIG=/app/example_data/example.py \
--env DATASET=img \
--env NUM_PROCESSES=2 \
--env LOG_PERIOD=10 \
text_renderer

Font Viewer

Start font viewer

streamlit run tools/font_viewer.py -- web /path/to/fonts_dir

image

Build docs

cd docs
make html
open _build/html/index.html

Citing text_renderer

If you use text_renderer in your research, please consider use the following BibTeX entry.

@misc{text_renderer,
  author =       {oh-my-ocr},
  title =        {text_renderer},
  howpublished = {\url{https://github.com/oh-my-ocr/text_renderer}},
  year =         {2021}
}
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
NLP-based analysis of poor Chinese movie reviews on Douban

douban_embedding 豆瓣中文影评差评分析 1. NLP NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。 下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。 "很好,演技不错

3 Apr 15, 2022
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022