RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

Related tags

Deep Learningraft-mlp
Overview

RaftMLP

RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

By Yuki Tatsunami and Masato Taki (Rikkyo University)

[arxiv]

Abstract

For the past ten years, CNN has reigned supreme in the world of computer vision, but recently, Transformer has been on the rise. However, the quadratic computational cost of self-attention has become a serious problem in practice applications. There has been much research on architectures without CNN and self-attention in this context. In particular, MLP-Mixer is a simple architecture designed using MLPs and hit an accuracy comparable to the Vision Transformer. However, the only inductive bias in this architecture is the embedding of tokens. This leaves open the possibility of incorporating a non-convolutional (or non-local) inductive bias into the architecture, so we used two simple ideas to incorporate inductive bias into the MLP-Mixer while taking advantage of its ability to capture global correlations. A way is to divide the token-mixing block vertically and horizontally. Another way is to make spatial correlations denser among some channels of token-mixing. With this approach, we were able to improve the accuracy of the MLP-Mixer while reducing its parameters and computational complexity. The small model that is RaftMLP-S is comparable to the state-of-the-art global MLP-based model in terms of parameters and efficiency per calculation. In addition, we tackled the problem of fixed input image resolution for global MLP-based models by utilizing bicubic interpolation. We demonstrated that these models could be applied as the backbone of architectures for downstream tasks such as object detection. However, it did not have significant performance and mentioned the need for MLP-specific architectures for downstream tasks for global MLP-based models.

About Environment

Our base is PyTorch, Torchvision, and Ignite. We use mmdetection and mmsegmentation for object detection and semantic segmentation. We also use ClearML, AWS, etc., for experiment management.

We also use Docker for our environment, and with Docker and NVIDIA Container Toolkit installed, we can build a runtime environment at the ready.

Require

  • NVIDIA Driver
  • Docker(19.03+)
  • Docker Compose(1.28.0+)
  • NVIDIA Container Toolkit

Prepare

clearml.conf

Please copy clearml.conf.sample, you can easily create clearml.conf. Unless you have a Clear ML account, you should use the account. Next, you obtain the access key and secret key of the service. Let's write them on clearml.conf. If you don't have an AWS account, you will need one. Then, create an IAM user and an S3 bucket, and grant the IAM user a policy that allows you to read and write objects to the bucket you created. Include the access key and secret key of the IAM user you created and the region of the bucket you made in your clearml.conf.

docker-compose.yml

Please copy docker-compose.yml.sample to docker-compose.yml. Change the path/to/datasets in the volumes section to an appropriate directory where the datasets are stored. You can set device_ids on your environment. If you train semantic segmentation models or object detection models, you should set WANDB_API_KEY.

Datasets

Except for ImageNet, our codes automatically download datasets, but we recommend downloading them beforehand. Datasets need to be placed in the location set in the datasets directory in docker-compose.yml.

ImageNet1k

Please go to URL and register on the site. Then you can download ImageNet1k dataset. You should place it under path/to/datasets with the following structure.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

CIFAR10

No problem, just let the code download automatically. URL

CIFAR100

No problem, just let the code download automatically. URL

Oxford 102 Flowers

No problem, just let the code download automatically. URL

Stanford Cars

You should place it under path/to/datasets with the following structure.

│stanford_cars/
├──cars_train/
│  ├── 00001.jpg
│  ├── 00002.jpg
│  ├── ......
├──cars_test/
│  ├── 00001.jpg
│  ├── 00002.jpg
│  ├── ......
├──devkit/
│  ├── cars_meta.mat
│  ├── cars_test_annos.mat
│  ├── cars_train_annos.mat
│  ├── eval_train.m
│  ├── README.txt
│  ├── train_perfect_preds.txt
├──cars_test_annos_withlabels.matcars_test_annos_withlabels.mat

URL

iNaturalist18

You should place it under path/to/datasets with the following structure.

│i_naturalist_18/
├──train_val2018/
│  ├──Actinopterygii/
│  │  ├──2229/
│  │  │  ├── 014a31153ac74bf87f1f730480e4a27a.jpg
│  │  │  ├── 037d062cc1b8a85821449d2cdeca7749.jpg
│  │  │  ├── ......
│  │  ├── ......
│  ├── ......
├──train2018.json
├──val2018.json

URL

iNaturalist19

You should place it under path/to/datasets with the following structure.

│i_naturalist_19/
├──train_val2019/
│  ├──Amphibians/
│  │  ├──153/
│  │  │  ├── 0042d05b4ffbd5a1ce2fc56513a7777e.jpg
│  │  │  ├── 006f69e838b87cfff3d12120795c4ada.jpg
│  │  │  ├── ......
│  │  ├── ......
│  ├── ......
├──train2019.json
├──val2019.json

URL

MS COCO

You should place it under path/to/datasets with the following structure.

│coco/
├──train2017/
│  ├── 000000000009.jpg
│  ├── 000000000025.jpg
│  ├── ......
├──val2017/
│  ├── 000000000139.jpg
│  ├── 000000000285.jpg
│  ├── ......
├──annotations/
│  ├── captions_train2017.json
│  ├── captions_val2017.json
│  ├── instances_train2017.json
│  ├── instances_val2017.json
│  ├── person_keypoints_train2017.json
│  ├── person_keypoints_val2017.json

URL

ADE20K

In order for you to download the ADE20k dataset, you have to register at this site and get approved. Once downloaded the dataset, place it so that it has the following structure.

│ade/
├──ADEChallengeData2016/
│  ├──annotations/
│  │  ├──training/
│  │  │  ├── ADE_train_00000001.png
│  │  │  ├── ADE_train_00000002.png
│  │  │  ├── ......
│  │  ├──validation/
│  │  │  ├── ADE_val_00000001.png
│  │  │  ├── ADE_val_00000002.png
│  │  │  ├── ......
│  ├──images/
│  │  ├──training/
│  │  │  ├── ADE_train_00000001.jpg
│  │  │  ├── ADE_train_00000002.jpg
│  │  │  ├── ......
│  │  ├──validation/
│  │  │  ├── ADE_val_00000001.jpg
│  │  │  ├── ADE_val_00000002.jpg
│  │  │  ├── ......
│  │  ├──
│  ├──objectInfo150.txt
│  ├──sceneCategories.txt

ImageNet1k

configs/settings are available. Each of the training conducted in Subsection 4.1 can be performed in the following commands.

docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-s
docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-m
docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-l

The ablation study for channel rafts in subsection 4.2 ran the following commands.

Ablation Study

docker run trainer python run.py settings=imagenet-org-mixer
docker run trainer python run.py settings=imagenet-raft-mlp-r-1
docker run trainer python run.py settings=imagenet-raft-mlp-r-2
docker run trainer python run.py settings=imagenet-raft-mlp

The ablation study for multi-scale patch embedding in subsection 4.2 ran the following commands.

docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-m
docker run trainer python run.py settings=imagenet-raft-mlp-hierarchy-m

Transfer Learning

docker run trainer python run.py settings=finetune/cars-org-mixer.yaml
docker run trainer python run.py settings=finetune/cars-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/cars-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/cars-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/cifar10-org-mixer.yaml
docker run trainer python run.py settings=finetune/cifar10-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/cifar10-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/cifar10-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/cifar100-org-mixer.yaml
docker run trainer python run.py settings=finetune/cifar100-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/cifar100-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/cifar100-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/flowers102-org-mixer.yaml
docker run trainer python run.py settings=finetune/flowers102-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/flowers102-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/flowers102-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/inat18-org-mixer.yaml
docker run trainer python run.py settings=finetune/inat18-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/inat18-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/inat18-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/inat19-org-mixer.yaml
docker run trainer python run.py settings=finetune/inat19-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/inat19-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/inat19-raft-mlp-cross-mlp-emb-l.yaml

Object Detection

The weights already trained by ImageNet should be placed in the following path.

path/to/datasets/weights/imagenet-raft-mlp-cross-mlp-emb-s/last_model_0.pt
path/to/datasets/weights/imagenet-raft-mlp-cross-mlp-emb-l/last_model_0.pt
path/to/datasets/weights/imagenet-raft-mlp-cross-mlp-emb-m/last_model_0.pt
path/to/datasets/weights/imagenet-org-mixer/last_model_0.pt

Please execute the following commands.

docker run trainer bash ./detection.sh configs/detection/maskrcnn_org_mixer_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/maskrcnn_raftmlp_l_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/maskrcnn_raftmlp_m_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/maskrcnn_raftmlp_s_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_org_mixer_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_raftmlp_l_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_raftmlp_m_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_raftmlp_s_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8

Semantic Segmentation

As with object detection, the following should be executed after placing the weight files in advance.

docker run trainer bash ./segmentation.sh configs/segmentation/fpn_org_mixer_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./segmentation.sh configs/segmentation/fpn_raftmlp_s_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./segmentation.sh configs/segmentation/fpn_raftmlp_m_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./segmentation.sh configs/segmentation/fpn_raftmlp_l_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8

Reference

@misc{tatsunami2021raftmlp,
  title={RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?},
  author={Yuki Tatsunami and Masato Taki},
  year={2021}
  eprint={2108.04384},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

License

This repository is relased under the Apache 2.0 license as douns in the LICENSE file.

Owner
Okojo
Okojo
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021