Codebase for the paper titled "Continual learning with local module selection"

Related tags

Deep LearningLMC
Overview

This repository contains the codebase for the paper Continual Learning via Local Module Composition.


Setting up the environemnt

Create a new conda environment and install the requirements.

conda create --name ENV python=3.7
conda activate ENV
pip install -r requirements.txt
pip install -e Utils/ctrl/
pip install Utils/nngeometry/

CTrL Benchmark

All experiments were run on Nvidia Quadro RTX 8000 GPUs. To run CTrL experiments use the following comands for different streams:

Stream S-

LMC (task agnostic)

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_minus --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=mean --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.6863, 15 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_minus --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3

(test acc. 0.667, 12 modules)

Stream S+

LMC

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --early_stop_complete=0 --pr_name lmc_cr --epochs=100 --epochs_str_only_after_addition=1 --hidden_size=64 --init_oh=none --init_runingstats_on_addition=1 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=10 --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_plus --temp=1 --wdecay=0.001

(test acc. 0.6244, 22 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_plus --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3 --regenerate_seed 0

(test acc. 0.609, 18 modules)

Stream Sin

LMC

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_in --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=most_likely --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.7081, 21 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_in --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3 --regenerate_seed 0

(test acc. 0.6646, 15 modules)

Stream Sout

LMC

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_out --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=mean --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.5849, 15 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_out --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 0 --regenerate_seed 0

(test acc. 0.6567, 11 modules)

Stream Spl

LMC

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --pr_name lmc_cr --deviation_threshold=1.5 --early_stop_complete=0 --epochs=100 --hidden_size=64 --init_oh=none --init_runingstats_on_addition=0 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=10 --reg_factor=10 --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_pl --temp=1 --regenerate_seed 0 --wdecay=0.001

(test acc. 0.6241, 19 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_pl --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-4 --regenerate_seed 0

(test acc. 0.6391, 18 modules)


Stream Slong30 -- 30 tasks

LMC (task aware)

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --epochs=50 --hidden_size=64 --init_oh=none --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=100 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=1 --running_stats_steps=50 --seed=180 --str_prior_factor=1 --str_prior_temp=0.01 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=0 --task_sequence=s_long30 --temp=1 --wdecay=0.001

(test acc. 62.44, 50 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --epochs=50 --hidden_size=64 --lr=0.001 --module_init=most_likely --multihead=gated_linear --n_tasks=100 --seed=180 --task_sequence=s_long30 --wdecay=0.001

(test acc. 64.58, 64 modules)


Stream Slong -- 100 tasks

LMC (task aware)

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=4 --epochs=100 --hidden_size=64 --init_oh=none --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=100 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=1 --running_stats_steps=50 --seed=180 --str_prior_factor=1 --str_prior_temp=0.01 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=0 --task_sequence=s_long --temp=1 --pr_name s_long_cr --wdecay=0

(test acc. 63.88, 32 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --n_tasks 100 --hidden_size 64 --searchspace topdown --keep_bn_in_eval_after_freeze 1 --pr_name s_long_cr --copy_batchstats 1 --track_running_stats_bn 1 --wand_notes correct_MNTDP --task_sequence s_long --gating MNTDP --shuffle_test 0 --epochs 50 --lr 1e-3 --wdecay 1e-3

(test acc. 68.92, 142 modules)


OOD generalization experiments

LMC

python main_transfer.py --regenerate_seed 0 --deviation_threshold=8 --epochs=50 --pr_name lmc_cr --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --momentum_bn_decoder=0.1 --normalize_data=1 --optmize_structure_only_free_modules=0 --projection_phase_length=10 --no_projection_phase 0 --reg_factor=10 --running_stats_steps=1000 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=linear_no_act --task_sequence=s_ood --temp=1 --wdecay=0 --task_agnostic_test=0

EWC

python main_transfer.py --epochs=50 --ewc=1000 --hidden_size=256 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --pr_name lmc_cr --multihead=usual --normalize_data=1  --task_sequence=s_ood --use_structural=0 --wdecay=0 --projection_phase_length=0

MNTDP

python main_transfer_mntdp.py --epochs=50 --regenerate_seed 0 --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --pr_name lmc_cr --lr=0.01 --module_init=none --multihead=usual --normalize_data=1 --task_sequence=s_ood --use_structural=0 --wdecay=0

LMC (no projetion)

python main_transfer.py --regenerate_seed 0 --deviation_threshold=8 --epochs=50 --pr_name lmc_cr --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --momentum_bn_decoder=0.1 --normalize_data=1 --optmize_structure_only_free_modules=0 --projection_phase_length=0 --no_projection_phase 1 --reg_factor=10 --running_stats_steps=1000 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=linear_no_act --task_sequence=s_ood --temp=1 --wdecay=0

Plug and play (combining independently trained modular learners)

python main_plug_and_play.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --early_stop_complete=0 --epochs=100 --epochs_str_only_after_addition=1 --pr_name lmc_cr --hidden_size=64 --init_oh=none --init_runingstats_on_addition=1 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=mean --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=3 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=10 --running_stats_steps=10 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_pnp_comp --temp=1 --wdecay=0.001

A list of hyperparameters used for other baselines can be found in the baselines.txt file.


References

Owner
Oleksiy Ostapenko
Oleksiy Ostapenko
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023