OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

Related tags

Deep LearningDrugOOD
Overview

đŸ”„ DrugOOD đŸ”„ : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery

This is the official implementation of the DrugOOD project, this is the project page: https://drugood.github.io/

Environment Installation

You can install the conda environment using the drugood.yaml file provided:

!git clone https://github.com/tencent-ailab/DrugOOD.git
!cd DrugOOD
!conda env create --name drugood --file=drugood.yaml
!conda activate drugood

Then you can go to the demo at demo/demo.ipynb which gives a quick practice on how to use DrugOOD.

Demo

For a quick practice on using DrugOOD for dataset curation and OOD benchmarking, one can refer to the demo/demo.ipynb.

Dataset Curator

First, you need to generate the required DrugOOD dataset with our code. The dataset curator currently focusing on generating datasets from CHEMBL. It supports the following two tasks:

  • Ligand Based Affinity Prediction (LBAP).
  • Structure Based Affinity Prediction (SBAP).

For OOD domain annotations, it supports the following 5 choices.

  • Assay.
  • Scaffold.
  • Size.
  • Protein. (only for SBAP task)
  • Protein Family. (only for SBAP task)

For noise annotations, it supports the following three noise levels. Datasets with different noises are implemented by filters with different levels of strictness.

  • Core.
  • Refined.
  • General.

At the same time, due to the inconvenient conversion between different measurement type (E.g. IC50, EC50, Ki, Potency), one needs to specify the measurement type when generating the dataset.

How to Run and Reproduce the 96 Datasets?

Firstly, specifiy the path of CHEMBL database and the directory to save the data in the configuration file: configs/_base_/curators/lbap_defaults.py for LBAP task or configs/_base_/curators/sbap_defaults.py for SBAP task.
The source_root="YOUR_PATH/chembl_29_sqlite/chembl_29.db" means the path to the chembl29 sqllite file. The target_root="data/" specifies the folder to save the generated data.

Note that you can download the original chembl29 database with sqllite format from http://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_sqlite.tar.gz.

The built-in configuration files are located in:
configs/curators/. Here we provide the 96 config files to reproduce the 96 datasets in our paper. Meanwhile, you can also customize your own datasets by changing the config files.

Run tools/curate.py to generate dataset. Here are some examples:

Generate datasets for the LBAP task, with assay as domain, core as noise level, IC50 as measurement type, LBAP as task type.:

python tools/curate.py --cfg configs/curators/lbap_core_ic50_assay.py

Generate datasets for the SBAP task, with protein as domain, refined as noise level, EC50 as measurement type, SBAP as task type.:

python tools/curate.py --cfg configs/curator/sbap_refined_ec50_protein.py

Benchmarking SOTA OOD Algorithms

Currently we support 6 different baseline algorithms:

  • ERM
  • IRM
  • GroupDro
  • Coral
  • MixUp
  • DANN

Meanwhile, we support various GNN backbones:

  • GIN
  • GCN
  • Weave
  • ShcNet
  • GAT
  • MGCN
  • NF
  • ATi-FPGNN
  • GTransformer

And different backbones for protein sequence modeling:

  • Bert
  • ProteinBert

How to Run?

Firstly, run the following command to install.

python setup.py develop

Run the LBAP task with ERM algorithm:

python tools/train.py configs/algorithms/erm/lbap_core_ec50_assay_erm.py

If you would like to run ERM on other datasets, change the corresponding options inside the above config file. For example, ann_file = 'data/lbap_core_ec50_assay.json' specifies the input data.

Similarly, run the SBAP task with ERM algorithm:

python tools/train.py configs/algorithms/erm/sbap_core_ec50_assay_erm.py

Reference

😄 If you find this repo is useful, please consider to cite our paper:

@ARTICLE{2022arXiv220109637J,
    author = {{Ji}, Yuanfeng and {Zhang}, Lu and {Wu}, Jiaxiang and {Wu}, Bingzhe and {Huang}, Long-Kai and {Xu}, Tingyang and {Rong}, Yu and {Li}, Lanqing and {Ren}, Jie and {Xue}, Ding and {Lai}, Houtim and {Xu}, Shaoyong and {Feng}, Jing and {Liu}, Wei and {Luo}, Ping and {Zhou}, Shuigeng and {Huang}, Junzhou and {Zhao}, Peilin and {Bian}, Yatao},
    title = "{DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations}",
    journal = {arXiv e-prints},
    keywords = {Computer Science - Machine Learning, Computer Science - Artificial Intelligence, Quantitative Biology - Quantitative Methods},
    year = 2022,
    month = jan,
    eid = {arXiv:2201.09637},
    pages = {arXiv:2201.09637},
    archivePrefix = {arXiv},
    eprint = {2201.09637},
    primaryClass = {cs.LG}
}

Disclaimer

This is not an officially supported Tencent product.

Owner
Research repositories.
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning đŸ§© Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. PolĂȘto 10 Jul 17, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
JugLab 33 Dec 30, 2022