OpenMMLab Pose Estimation Toolbox and Benchmark.

Overview

Introduction

English | 简体中文

Documentation actions codecov PyPI LICENSE Average time to resolve an issue Percentage of issues still open

MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.3+.


COCO 17-keypoint pose estimation

133-keypoint whole-body pose estimation (full HD version)


2D animal_pose estimation

Major Features

  • Support diverse tasks

    We support a wide spectrum of mainstream pose analysis tasks in current research community, including 2d multi-person human pose estimation, 2d hand pose estimation, 2d face landmark detection, 133 keypoint whole-body human pose estimation, 3d human mesh recovery, fashion landmark detection and animal pose estimation. See demo.md for more information.

  • Higher efficiency and higher accuracy

    MMPose implements multiple state-of-the-art (SOTA) deep learning models, including both top-down & bottom-up approaches. We achieve faster training speed and higher accuracy than other popular codebases, such as HRNet. See benchmark.md for more information.

  • Support for various datasets

    The toolbox directly supports multiple popular and representative datasets, COCO, AIC, MPII, MPII-TRB, OCHuman etc. See data_preparation.md for more information.

  • Well designed, tested and documented

    We decompose MMPose into different components and one can easily construct a customized pose estimation framework by combining different modules. We provide detailed documentation and API reference, as well as unittests.

Model Zoo

Supported algorithms:

(click to collapse)

Supported datasets:

(click to collapse)

Supported backbones:

(click to expand)

Results and models are available in the README.md of each method's config directory. A summary can be found in the model zoo page. We will keep up with the latest progress of the community, and support more popular algorithms and frameworks.

If you have any feature requests, please feel free to leave a comment in Issues.

Benchmark

We demonstrate the superiority of our MMPose framework in terms of speed and accuracy on the standard COCO keypoint detection benchmark.

Model Input size MMPose (s/iter) HRNet (s/iter) MMPose (mAP) HRNet (mAP)
resnet_50 256x192 0.28 0.64 0.718 0.704
resnet_50 384x288 0.81 1.24 0.731 0.722
resnet_101 256x192 0.36 0.84 0.726 0.714
resnet_101 384x288 0.79 1.53 0.748 0.736
resnet_152 256x192 0.49 1.00 0.735 0.720
resnet_152 384x288 0.96 1.65 0.750 0.743
hrnet_w32 256x192 0.54 1.31 0.746 0.744
hrnet_w32 384x288 0.76 2.00 0.760 0.758
hrnet_w48 256x192 0.66 1.55 0.756 0.751
hrnet_w48 384x288 1.23 2.20 0.767 0.763

More details about the benchmark are available on benchmark.md.

Installation

Please refer to install.md for installation.

Data Preparation

Please refer to data_preparation.md for a general knowledge of data preparation.

Get Started

Please see getting_started.md for the basic usage of MMPose. There are also tutorials:

FAQ

Please refer to FAQ for frequently asked questions.

License

This project is released under the Apache 2.0 license.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmpose2020,
    title={OpenMMLab Pose Estimation Toolbox and Benchmark},
    author={MMPose Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmpose}},
    year={2020}
}

Contributing

We appreciate all contributions to improve MMPose. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMPose is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new models.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
Comments
  • Can noise be added to Dataset.

    Can noise be added to Dataset.

    Hallo Team,

    I was training the hrnet model and trying to improve the accuracy of model since trained the model too many times and it may lead to overfitting.

    I would like to know if there is a possibility to augment the data with random noise in MMPOSE?

    Where to look into the code of mmpose and how we can do this ?

    Please suggest !

    kind/discussion 
    opened by YuktiADY 68
  • How to Test on images as well as synthetic images

    How to Test on images as well as synthetic images

    I have trained model on my custom dataset and the results are pretty much good **Best AP is 0.9624 at 30 epoch..

    How ca i test some images or some synthetic images on my trained model ??

    question 
    opened by YuktiADY 64
  • COCOeval' object has no attribute 'score_key'

    COCOeval' object has no attribute 'score_key'

    Hello,

    While training i am getting AttributeError: 'COCOeval' object has no attribute 'score_key'

    Traceback (most recent call last): File "./mmpose/tools/train.py", line 170, in main() File "./mmpose/tools/train.py", line 166, in main meta=meta) File "/home/yukti/mmpose/mmpose/mmpose/apis/train.py", line 192, in train_model runner.run(data_loaders, cfg.workflow, cfg.total_epochs) File "/home/yukti/mmpose/mmcv/mmcv/runner/epoch_based_runner.py", line 127, in run epoch_runner(data_loaders[i], **kwargs) File "/home/yukti/mmpose/mmcv/mmcv/runner/epoch_based_runner.py", line 54, in train self.call_hook('after_train_epoch') File "/home/yukti/mmpose/mmcv/mmcv/runner/base_runner.py", line 309, in call_hook getattr(hook, fn_name)(self) File "/home/yukti/mmpose/mmcv/mmcv/runner/hooks/evaluation.py", line 267, in after_train_epoch self._do_evaluate(runner) File "/home/yukti/mmpose/mmcv/mmcv/runner/hooks/evaluation.py", line 505, in _do_evaluate key_score = self.evaluate(runner, results) File "/home/yukti/mmpose/mmpose/mmpose/core/evaluation/eval_hooks.py", line 139, in evaluate **self.eval_kwargs) File "/home/yukti/mmpose/mmpose/mmpose/datasets/datasets/top_down/topdown_coco_dataset.py", line 317, in evaluate info_str = self._do_python_keypoint_eval(res_file) File "/home/yukti/mmpose/mmpose/mmpose/datasets/datasets/top_down/topdown_coco_dataset.py", line 371, in _do_python_keypoint_eval coco_eval.evaluate() File "/home/yukti/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/xtcocotools/cocoeval.py", line 257, in evaluate for imgId in p.imgIds File "/home/yukti/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/xtcocotools/cocoeval.py", line 258, in for catId in catIds} File "/home/yukti/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/xtcocotools/cocoeval.py", line 311, in computeOks inds = np.argsort([-d[self.score_key] for d in dts], kind='mergesort') File "/home/yukti/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/xtcocotools/cocoeval.py", line 311, in inds = np.argsort([-d[self.score_key] for d in dts], kind='mergesort') AttributeError: 'COCOeval' object has no attribute 'score_key'

    opened by YuktiADY 57
  • prediction and see the results

    prediction and see the results

    Hi I see in the documentation that we can do prediction on the complete dataset and generate a JSON of predictions or see the ground truth keypoints of the dataset but I see nowhere how to do the prediction on a new image and to see the predictions on the image predicted. The JSON file format generated by prediction is incompatible with those of the visualization. Furthermore I launched my training and after 140 epochs I have a loss of 2.0 and my keypoints are far of where it would be, the max score I have is 0.35. How to improve it please ?

    opened by SylvainArd 43
  • Questions about the polygon annotation in the dataset

    Questions about the polygon annotation in the dataset

    Hello,. I would like to know if the points in the JSON training file formatted in COCO must be inside their polygons or if it does not matter. Moreover I would like to know if the detection of points takes into account the neighborhood of the point on the one hand and the neighborhood of its polygon on the other hand. Finally I would like to know how to customize my point and polygon classes in your software. Thanks Cordially

    opened by SylvainArd 36
  • RESUME FROM in the config doesnt work

    RESUME FROM in the config doesnt work

    Hallo ,

    I already trained hrnet[w32]_256x192 model and now i want to again continue training for some epochs so i gave in the config. resume_from = '/home/yukti/mmpose/theodore_2022-04-25/best_AP_epoch_30.pth'

    but the training is not resuming from this epoch rather ti shows this .

    2022-05-03 14:47:57,328 - mmpose - INFO - workflow: [('train', 1)], max: 30 epochs 2022-05-03 14:47:57,328 - mmpose - INFO - Checkpoints will be saved to /home/yukti/mmpose/theodore_2022-05-03 by HardDiskBackend. INFO:torch.distributed.elastic.agent.server.api:[default] worker group successfully finished. Waiting 300 seconds for other agents to finish. INFO:torch.distributed.elastic.agent.server.api:Local worker group finished (SUCCEEDED). Waiting 300 seconds for other agents to finish /home/yukti/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/elastic/utils/store.py:71: FutureWarning: This is an experimental API and will be changed in future. "This is an experimental API and will be changed in future.", FutureWarning INFO:torch.distributed.elastic.agent.server.api:Done waiting for other agents. Elapsed: 0.0006282329559326172 seconds {"name": "torchelastic.worker.status.SUCCEEDED", "source": "WORKER", "timestamp": 0, "metadata": {"run_id": "none", "global_rank": 0, "group_rank": 0, "worker_id": "3529801", "role": "default", "hostname": "dst-toaster.etit.tu-chemnitz.de", "state": "SUCCEEDED", "total_run_time": 45, "rdzv_backend": "static", "raw_error": null, "metadata": "{"group_world_size": 1, "entry_point": "python", "local_rank": [0], "role_rank": [0], "role_world_size": [1]}", "agent_restarts": 0}} {"name": "torchelastic.worker.status.SUCCEEDED", "source": "AGENT", "timestamp": 0, "metadata": {"run_id": "none", "global_rank": null, "group_rank": 0, "worker_id": null, "role": "default", "hostname": "dst-toaster.etit.tu-chemnitz.de", "state": "SUCCEEDED", "total_run_time": 45, "rdzv_backend": "static", "raw_error": null, "metadata": "{"group_world_size": 1, "entry_point": "python"}", "agent_restarts": 0}}

    Last time ti worked but not this time. Please suggest!

    opened by YuktiADY 26
  • ValueError: Unknown projection '3d'

    ValueError: Unknown projection '3d'

    由于没有路径文件的关系,自己上传了一个文件 运行时显示:RuntimeError: Only one file(not dir) is allowed in the zipfile

    自己预处理把model下载,定义了下输入文件和输出文件路径后发生如下报错,请问该怎样做才能复现demo呢 Use load_from_local loader [ ] 0/719, elapsed: 0s, ETA:Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/matplotlib/projections/init.py", line 58, in get_projection_class return projection_registry.get_projection_class(projection) File "/usr/local/lib/python3.6/dist-packages/matplotlib/projections/init.py", line 25, in get_projection_class return self._all_projection_types[name] KeyError: '3d'

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "test.py", line 333, in main() File "test.py", line 317, in main num_instances=num_instances) File "/usr/local/lib/python3.6/dist-packages/mmpose/apis/inference_3d.py", line 423, in vis_3d_pose_result out_file=out_file) File "/usr/local/lib/python3.6/dist-packages/mmpose/models/detectors/pose_lifter.py", line 388, in show_result num_instances=num_instances) File "/usr/local/lib/python3.6/dist-packages/mmpose/core/visualization/image.py", line 274, in imshow_keypoints_3d ax = fig.add_subplot(1, num_axis, ax_idx, projection='3d') File "/usr/local/lib/python3.6/dist-packages/matplotlib/figure.py", line 1396, in add_subplot self._process_projection_requirements(*args, **kwargs) File "/usr/local/lib/python3.6/dist-packages/matplotlib/figure.py", line 1120, in _process_projection_requirements projection_class = projections.get_projection_class(projection) File "/usr/local/lib/python3.6/dist-packages/matplotlib/projections/init.py", line 60, in get_projection_class raise ValueError("Unknown projection %r" % projection) ValueError: Unknown projection '3d'

    opened by 642802017 23
  • how to decode onnx model and get final results on image?

    how to decode onnx model and get final results on image?

    After run pytorch2onnx.py, I have got the onnx model, but I have not found the relevant documents that can infer it to check the correctness of resultes of the onnx model. How can I do it? Or do you have the relevant reasoning scripts for reference ONNX MODEL? I need your help

    kind/discussion onnx 
    opened by zcc720 22
  • UserWarning about mmpose1.0

    UserWarning about mmpose1.0

    When I run runner.val , it show :"UserWarning: Since the spatial dimensions of overlaid_image: (488, 640) and featmap: torch.Size([64, 48]) are not same, the feature map will be interpolated. This may cause mismatch problems !" waht's my problem

    info/1.x 
    opened by ChenZhenGui 19
  • [Enhance] Speedup the Video Inference by Accelerating data-loading Stage in Top_Down_Full_Frame_without_Det

    [Enhance] Speedup the Video Inference by Accelerating data-loading Stage in Top_Down_Full_Frame_without_Det

    It's a parallel to my mmdetection PR.

    Motivation

    The video inference was not efficient, because there are many "resize", "padding", "to rgb" and "normalize" operations in CPU workload. Besides, the 'img_metas' is calculated for every frame, which is nonefficient. The CPU workload is really high, but the speed is slow.

    Modification

    I transformed the video "crop", "resize", "padding", "to rgb" in ffmpeg-based video reader, which is lite and CPU friendly. The video reader can support NVIDIA-VIDEO-DECODING if possible, to save more CPU workload. And the "normalize" is done in GPU. In all, I reduced the data-loading time and CPU workload.

    Result

    For the pure data loading, it can reach 400 Fps (possible the ceiling of NVIDIA-DECODER). The CPU work load is acceptable (450%).

        for frame_resize, frame_origin in zip(
                mmcv.track_iter_progress(video_resize), video_origin):
    
            # test a single frame without model inference
            data = process_img(frame_resize, img_metas, args.device)
            continue
            pose_results = pose_model(
                    return_loss=False, return_heatmap=False, **data)
    

    The video size is 1280x800, converting to image size 512x512.

    图片 图片

    Limitation

    1. Only works for top_down_video_demo_full_frame_without_det.py. May be adaptive to bottom_up_video_demo.py.
    2. Didn't support for flip-pair test.

    Checklist

    Before PR:

    • [x] I have read and followed the workflow indicated in the CONTRIBUTING.md to create this PR.
    • [x] Pre-commit or linting tools indicated in CONTRIBUTING.md are used to fix the potential lint issues.

    After PR:

    • [x] CLA has been signed and all committers have signed the CLA in this PR.
    opened by chenxinfeng4 18
  • Low COCO Evaluation results although acc_pose is high

    Low COCO Evaluation results although acc_pose is high

    Hi, I am trying to implement a new data augmentation technique into the train pipeline. I have incorporated the technique after TopDownAffine in the train pipeline. When I start training the model, I get good acc_pose values and the loss also decreases however when the evaluation is done (after 50 epochs), the resulting metrics are very poor:

    Average Precision (AP) @[ IoU=0.50:0.95 | type= all | maxDets= 20 ] = 0.001 Average Precision (AP) @[ IoU=0.50 | type= all | maxDets= 20 ] = 0.009 Average Precision (AP) @[ IoU=0.75 | type= all | maxDets= 20 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | type=medium | maxDets= 20 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | type= large | maxDets= 20 ] = 0.002 Average Recall (AR) @[ IoU=0.50:0.95 | type= all | maxDets= 20 ] = 0.015 Average Recall (AR) @[ IoU=0.50 | type= all | maxDets= 20 ] = 0.087 Average Recall (AR) @[ IoU=0.75 | type= all | maxDets= 20 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | type=medium | maxDets= 20 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | type= large | maxDets= 20 ] = 0.017

    What can be the possible reason for this? Should I incorporate the augmentation method in the val pipeline as well? The method simply merges the image with its mask image and returns the result.

    question 
    opened by rubeea 18
  • [Fix] Update minimum python version to 3.7

    [Fix] Update minimum python version to 3.7

    Motivation

    Modification

    BC-breaking (Optional)

    Use cases (Optional)

    Checklist

    Before PR:

    • [ ] I have read and followed the workflow indicated in the CONTRIBUTING.md to create this PR.
    • [ ] Pre-commit or linting tools indicated in CONTRIBUTING.md are used to fix the potential lint issues.
    • [ ] Bug fixes are covered by unit tests, the case that causes the bug should be added in the unit tests.
    • [ ] New functionalities are covered by complete unit tests. If not, please add more unit tests to ensure correctness.
    • [ ] The documentation has been modified accordingly, including docstring or example tutorials.

    After PR:

    • [ ] CLA has been signed and all committers have signed the CLA in this PR.
    opened by Ben-Louis 1
  • mmpose1.x NOT work for training my own dataset

    mmpose1.x NOT work for training my own dataset

    I follow the repo and train the demo loucst dataset. It works and here is the training log:

    01/07 10:54:26 - mmengine - INFO - Epoch(train) [1][50/79]  lr: 4.954910e-05  eta: 0:02:59  time: 0.241931  data_time: 0.098693  memory: 1397  loss: 0.006913  loss_kpt: 0.006913  acc_pose: 0.178571
    01/07 10:54:29 - mmengine - INFO - Exp name: td-hm_res101_8xb64-210e_locust-160x160_20230107_105408
    01/07 10:54:29 - mmengine - INFO - Saving checkpoint at 1 epochs
    01/07 10:54:36 - mmengine - INFO - Epoch(train) [2][50/79]  lr: 1.286283e-04  eta: 0:01:26  time: 0.096829  data_time: 0.001756  memory: 1396  loss: 0.004748  loss_kpt: 0.004748  acc_pose: 0.407143
    01/07 10:54:39 - mmengine - INFO - Exp name: td-hm_res101_8xb64-210e_locust-160x160_20230107_105408
    01/07 10:54:39 - mmengine - INFO - Saving checkpoint at 2 epochs
    

    and Then I want to use my own dataset. It has been transformed to coco format. Follow locust dataset, similarly,I get the training log below:

    01/07 11:33:50 - mmengine - INFO - Checkpoints will be saved to C:\Work\Proj\PyProj\mmpose-1.x\mmpose-1.x\tools\work_dirs\td-hm_res101_8xb64-210e_chicken-160x160.
    01/07 11:34:07 - mmengine - INFO - Epoch(train) [1][50/204]  lr: 4.954910e-05  eta: 0:11:45  time: 0.354480  data_time: 0.154573  memory: 2239  loss: 0.000000  loss_kpt: 0.000000  acc_pose: 0.000000
    01/07 11:34:18 - mmengine - INFO - Epoch(train) [1][100/204]  lr: 9.959920e-05  eta: 0:09:13  time: 0.216220  data_time: 0.065922  memory: 2239  loss: 0.000003  loss_kpt: 0.000003  acc_pose: 0.000000
    01/07 11:34:29 - mmengine - INFO - Epoch(train) [1][150/204]  lr: 1.496493e-04  eta: 0:08:14  time: 0.213670  data_time: 0.064010  memory: 2239  loss: 0.000000  loss_kpt: 0.000000  acc_pose: 0.000000
    01/07 11:34:39 - mmengine - INFO - Epoch(train) [1][200/204]  lr: 1.996994e-04  eta: 0:07:36  time: 0.207582  data_time: 0.058121  memory: 2239  loss: 0.000000  loss_kpt: 0.000000  acc_pose: 0.000000
    01/07 11:34:40 - mmengine - INFO - Exp name: td-hm_res101_8xb64-210e_chicken-160x160_20230107_113344
    01/07 11:34:40 - mmengine - INFO - Saving checkpoint at 1 epochs
    01/07 11:34:54 - mmengine - INFO - Epoch(train) [2][50/204]  lr: 2.537535e-04  eta: 0:06:57  time: 0.194315  data_time: 0.037169  memory: 2239  loss: 0.000000  loss_kpt: 0.000000  acc_pose: 0.000000
    01/07 11:35:04 - mmengine - INFO - Epoch(train) [2][100/204]  lr: 3.038036e-04  eta: 0:06:32  time: 0.188513  data_time: 0.035870  memory: 2239  loss: 0.000000  loss_kpt: 0.000000  acc_pose: 0.000000
    01/07 11:35:13 - mmengine - INFO - Epoch(train) [2][150/204]  lr: 3.538537e-04  eta: 0:06:13  time: 0.193783  data_time: 0.044105  memory: 2239  loss: 0.000000  loss_kpt: 0.000000  acc_pose: 0.000000
    

    the loss 、loss_kpt and acc_pose are always ZERO.

    Here are some details:

    (1) config file:

    _base_ = ['../../../_base_/default_runtime.py' ]
    
    # runtime
    train_cfg = dict(max_epochs=10, val_interval=10) #210
    
    # optimizer
    optim_wrapper = dict(optimizer=dict(
        type='Adam',
        lr=5e-4,
    ))
    
    # learning policy
    param_scheduler = [
        dict(
            type='LinearLR', begin=0, end=500, start_factor=0.001,
            by_epoch=False),  # warm-up
        dict(
            type='MultiStepLR',
            begin=0,
            end=210,
            milestones=[170, 200],
            gamma=0.1,
            by_epoch=True)
    ]
    
    # automatically scaling LR based on the actual training batch size
    auto_scale_lr = dict(base_batch_size=512)
    
    # hooks
    default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))
    
    # codec settings
    codec = dict(
        type='MSRAHeatmap', input_size=(160, 160), heatmap_size=(40, 40), sigma=2)
    
    # model settings
    model = dict(
        type='TopdownPoseEstimator',
        data_preprocessor=dict(
            type='PoseDataPreprocessor',
            mean=[123.675, 116.28, 103.53],
            std=[58.395, 57.12, 57.375],
            bgr_to_rgb=True),
        backbone=dict(
            type='ResNet',
            depth=101,
            init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'),
        ),
        head=dict(
            type='HeatmapHead',
            in_channels=2048,
            out_channels=10, #change 35 to 10
            loss=dict(type='KeypointMSELoss', use_target_weight=True),
            decoder=codec),
        test_cfg=dict(
            flip_test=True,
            flip_mode='heatmap',
            shift_heatmap=True,
        ))
    
    # base dataset settings
    dataset_type = 'ChickenDataset'
    data_mode = 'topdown'
    data_root = '../data/chicken/'
    
    
    # pipelines
    train_pipeline = [
        dict(type='LoadImage', file_client_args={{_base_.file_client_args}}),
        dict(type='GetBBoxCenterScale', padding=0.8),
        dict(type='RandomFlip', direction='horizontal'),
        dict(
            type='RandomBBoxTransform',
            shift_factor=0.25,
            rotate_factor=180,
            scale_factor=(0.7, 1.3)),
        dict(type='TopdownAffine', input_size=codec['input_size']),
        dict(type='GenerateTarget', target_type='heatmap', encoder=codec),
        dict(type='PackPoseInputs')
    ]
    val_pipeline = [
        dict(type='LoadImage', file_client_args={{_base_.file_client_args}}),
        dict(type='GetBBoxCenterScale', padding=0.8),
        dict(type='TopdownAffine', input_size=codec['input_size']),
        dict(type='PackPoseInputs')
    ]
    
    # data loaders
    train_dataloader = dict(
        batch_size=8, #64
        num_workers=2,
        persistent_workers=True,
        sampler=dict(type='DefaultSampler', shuffle=True),
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            data_mode=data_mode,
            ann_file='annotations/train.json',
            data_prefix=dict(img='images/'),
            pipeline=train_pipeline,
        ))
    val_dataloader = dict(
        batch_size=32,
        num_workers=2,
        persistent_workers=True,
        drop_last=False,
        sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            data_mode=data_mode,
            ann_file='annotations/val.json',
            data_prefix=dict(img='images/'),
            test_mode=True,
            pipeline=val_pipeline,
        ))
    test_dataloader = val_dataloader
    
    # evaluators
    val_evaluator = [
        dict(type='PCKAccuracy', thr=0.2),
        dict(type='AUC'),
        dict(type='EPE'),
    ]
    test_evaluator = val_evaluator
    
    

    (2) ann files:

    "images": [
            {
                "height": 1920,
                "width": 2560,
                "id": 1,
                "dir_name": "train",
                "file_name": "ch02_20210212124211_001046.jpg"
            },
            {
                "height": 1920,
                "width": 2560,
                "id": 2,
                "dir_name": "train",
                "file_name": "ch02_20210213143154_000524.jpg"
    
    
            ...
    
    "image_id": 922,
                "bbox": [
                    762,
                    631,
                    1415,
                    1288
                ],
                "category_id": 1,
                "id": 1545
            },
            {
                "segmentation": [
                    0
                ],
                "num_keypoints": 9,
                "area": 1807656,
                "iscrowd": 0,
                "keypoints": [
                    715,
                    1125,
                    2,
                    0,
                    0,
                    0,
                    786,
                    1584,
                    2,
                    699,
                    1568,
                    2,
                    799,
                    1746,
                    2,
                    643,
                    1703,
                    2,
                    392,
                    623,
                    2,
                    299,
                    637,
                    2,
                    354,
                    595,
                    2,
                    343,
                    697,
                    2
                ],
        ... 
    
    

    (3)point file

    dataset_info = dict(
        dataset_name='chicken',
        paper_info=dict(
            author='yuan ',
            title='chicken',
            container='',
            year='2022',
            homepage='',
        ),
        keypoint_info={
            0:
            dict(name='body_center', id=0, color=[51, 153, 255], type='', swap=''),
            1:
            dict(
                name='body_tail',
                id=1,
                color=[51, 153, 255],
                type='',
                swap=''),
            2:
            dict(
                name='body_knee_left',
                id=2,
                color=[51, 153, 255],
                type='',
                swap=''),
            3:
            dict(
                name='body_knee_right',
                id=3,
                color=[51, 153, 255],
                type='',
                swap=''),
            4:
            dict(
                name='body_heel_left',
                id=4,
                color=[51, 153, 255],
                type='',
                swap=''),
            5:
            dict(
                name='body_heel_right',
                id=5,
                color=[0, 255, 0],
                type='',
                swap=''),
            6:
            dict(
                name='eye_left',
                id=6,
                color=[255, 128, 0],
                type='',
                swap=''),
            7:
            dict(
                name='eye_right',
                id=7,
                color=[0, 255, 0],
                type='',
                swap=''),
            8:
            dict(
                name='comb',
                id=8,
                color=[255, 128, 0],
                type='',
                swap=''),
            9:
            dict(
                name='beak',
                id=9,
                color=[0, 255, 0],
                type='',
                swap=''),
        },
        skeleton_info={
            0:
            dict(link=('body_center', 'body_tail'), id=0, color=[0, 255, 0]),
            1:
            dict(link=('body_center', 'body_knee_left'), id=1, color=[0, 255, 0]),
            2:
            dict(link=('body_center', 'body_knee_right'), id=2, color=[255, 128, 0]),
            3:
            dict(link=('body_center', 'eye_left'), id=3, color=[255, 128, 0]),
            4:
            dict(link=('body_knee_left', 'body_heel_left'), id=4, color=[51, 153, 255]),
            5:
            dict(link=('body_knee_right', 'body_heel_right'), id=5, color=[0, 255, 0]),
            6:
            dict(
                link=('eye_left', 'comb'), id=6, color=[255, 128, 0]),
            7:
            dict(link=('eye_left', 'beak'), id=7, color=[0, 255, 0]),
        },
        joint_weights=[
            1., 1., 1., 1., 1., 1., 1., 1., 1.2, 1.2
        ],
        sigmas=[
            0.026, 0.025, 0.025, 0.035, 0.035, 0.029, 0.029, 0.072, 0.079, 0.079
        ]
    )
    
    

    Maybe (1) my image is too big? 2560 * 1920? (2) in config file, input_size = (160,160) is not suitable?

    Anthing will be appreciated, Thanks.

    opened by github2016-yuan 1
  • MMPose_Tutorial.ipynb error in a particular cell

    MMPose_Tutorial.ipynb error in a particular cell

    the below command

    "from mmpose.apis import inference_top_down_pose_model,init_pose_model,vis_pose_result, process_mmdet_results"

    throws error.

    PFB error details. /usr/local/lib/python3.8/dist-packages/xtcocotools/mask.py in 1 author = 'tsungyi' 2 ----> 3 import xtcocotools._mask as _mask 4 5 # Interface for manipulating masks stored in RLE format.

    xtcocotools/_mask.pyx in init xtcocotools._mask()

    ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject

    I tried to upgrade numpy as well, but it did not work.

    opened by SoumyajitMukherjee-droid 1
  • MIm command not working

    MIm command not working

    when i try to run "!mim download mmpose --config associative_embedding_hrnet_w32_coco_512x512 --dest ." in a cell in Jupyter notebook, it gives the following error.

    "'mim' is not recognized as an internal or external command, operable program or batch file."

    i installed openmim "pip install openmim" it got successfully installed, and i have restarted the kernel as well, then also it throws the above error

    opened by SoumyajitMukherjee-droid 0
  • available output_layer_names in demo

    available output_layer_names in demo

    How can I find out which layers are available for any network to define here - https://github.com/open-mmlab/mmpose/blob/1f11d6ccbaa034e50847feb92bc7cf7760a2e387/demo/top_down_video_demo_with_mmdet.py#L138 ?

    i would specifically like to log the bottleneck, which is not available for a ResNet for some reason?

    opened by iulsko 1
Releases(v1.0.0rc0)
  • v1.0.0rc0(Oct 14, 2022)

    New Features

    • Support 4 light-weight pose estimation algorithms: SimCC (ECCV'2022), Debias-IPR (ICCV'2021), IPR (ECCV'2018), and DSNT (ArXiv'2018) (#1628) @Tau-J

    Migrations

    • Add Webcam API in MMPose 1.0 (#1638, #1662) @Ben-Louis
    • Add codec for Associative Embedding (beta) (#1603) @ly015

    Improvements

    • Add a colab tutorial for MMPose 1.0 (#1660) @Tau-J
    • Add model index in config folder (#1710, #1709, #1627) @ly015, @Tau-J, @Ben-Louis
    • Update and improve documentation (#1692, #1656, #1681, #1677, #1664, #1659) @Tau-J, @Ben-Louis, @liqikai9
    • Improve config structures and formats (#1651) @liqikai9

    Bug Fixes

    • Update mmengine version requirements (#1715) @Ben-Louis
    • Update dependencies of pre-commit hooks (#1705) @Ben-Louis
    • Fix mmcv version in DockerFile (#1704)
    • Fix a bug in setting dataset metainfo in configs (#1684) @ly015
    • Fix a bug in UDP training (#1682) @liqikai9
    • Fix a bug in Dark decoding (#1676) @liqikai9
    • Fix bugs in visualization (#1671, #1668, #1657) @liqikai9, @Ben-Louis
    • Fix incorrect flops calculation (#1669) @liqikai9
    • Fix tensor.tile compatibility issue for pytorch 1.6 (#1658) @ly015
    • Fix compatibility with MultilevelPixelData (#1647) @liqikai9
    Source code(tar.gz)
    Source code(zip)
  • v0.29.0(Oct 14, 2022)

    Highlights

    • Support DEKR, CVPR'2021 (#1693) @JinluZhang1126, @jin-s13, @Ben-Louis
    • Support CID, CVPR'2022 (#1604) @kennethwdk, @jin-s13, @Ben-Louis

    Improvements

    • Improve 3D pose estimation demo with viewpoint & height controlling and enriched input formats (#1481, #1490) @pallgeuer, @liqikai9
    • Improve smoothing of 3D video pose estimation (#1479) @darcula1993
    • Improve dependency management for smoother installation (#1491) @danielbraun89
    • Improve documentation quality (#1680, #1525, #1516, #1513, #1511, #1507, #1506, #1525) @Ben-Louis, @Yulv-git, @jin-s13

    Bug Fixes

    • Update dependency versions of pre-commit-hooks (#1706, #1678) @Ben-Louis, @liqikai9
    • Fix missing data transforms in RLE configs (#1632) @Ben-Louis
    • Fix a bug in fliplr_joints that causes error when keypoint visibility has float values (#1589) @walsvid
    • Fix hsigmoid default parameters (#1575) @Ben-Louis
    • Fix a bug in UDP decoding (#1565) @liqikai9
    • Fix a bug in pose tracking demo with non-COCO dataset (#1504) @daixinghome
    • Fix typos and unused contents in configs (#1499, #1496) @liqikai9
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0b0(Sep 1, 2022)

    We are excited to announce the release of MMPose 1.0.0beta. MMPose 1.0.0beta is the first version of MMPose 1.x, a part of the OpenMMLab 2.0 projects. Built upon the new training engine.

    Highlights

    • New engines. MMPose 1.x is based on MMEngine, which provides a general and powerful runner that allows more flexible customizations and significantly simplifies the entrypoints of high-level interfaces.

    • Unified interfaces. As a part of the OpenMMLab 2.0 projects, MMPose 1.x unifies and refactors the interfaces and internal logics of train, testing, datasets, models, evaluation, and visualization. All the OpenMMLab 2.0 projects share the same design in those interfaces and logics to allow the emergence of multi-task/modality algorithms.

    • More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started more smoothly. Read it here.

    Breaking Changes

    In this release, we made lots of major refactoring and modifications. Please refer to the migration guide for details and migration instructions.

    Source code(tar.gz)
    Source code(zip)
  • v0.28.1(Jul 28, 2022)

  • v0.28.0(Jul 6, 2022)

    Highlights

    • Support TCFormer backbone, CVPR'2022 (#1447, #1452) @zengwang430521
    • Add RLE models on COCO dataset (#1424) @Indigo6, @Ben-Louis, @ly015
    • Update swin models with better performance (#1467) @jin-s13

    New Features

    • Support TCFormer backbone, CVPR'2022 (#1447, #1452) @zengwang430521
    • Add RLE models on COCO dataset (#1424) @Indigo6, @Ben-Louis, @ly015
    • Support layer decay optimizer conctructor and learning rate decay optimizer constructor (#1423) @jin-s13

    Improvements

    • Improve documentation quality (#1416, #1421, #1423, #1426, #1458, #1463) @ly015, @liqikai9
    • Support installation by mim (#1425) @liqikai9
    • Support PAVI logger (#1434) @EvelynWang-0423
    • Add progress bar for some demos (#1454) @liqikai9
    • Webcam API supports quick device setting in terminal commands (#1466) @ly015
    • Update swin models with better performance (#1467) @jin-s13

    Bug Fixes

    • Rename custom_hooks_config to custom_hooks in configs to align with the documentation (#1427) @ly015
    • Fix deadlock issue in Webcam API (#1430) @ly015
    • Fix smoother configs in video 3D demo (#1457) @ly015
    Source code(tar.gz)
    Source code(zip)
  • v0.27.0(Jun 7, 2022)

    Highlights

    New Features

    • Support gesture recognition algorithm MTUT CVPR'2019 and dataset NVGesture CVPR'2016 (#1380) @Ben-Louis

    Improvements

    • Upgrade Webcam API and related documents (#1393, #1404, #1413) @ly015
    • Support exporting COCO inference result without the annotation file (#1368) @liqikai9
    • Replace markdownlint with mdformat in CI to avoid the dependence on ruby #1382 @ly015
    • Improve documentation quality (#1385, #1394, #1395, #1408) @chubei-oppen, @ly015, @liqikai9

    Bug Fixes

    • Fix xywh->xyxy bbox conversion in dataset sanity check (#1367) @jin-s13
    • Fix a bug in two-stage 3D keypoint demo (#1373) @ly015
    • Fix out-dated settings in PVT configs (#1376) @ly015
    • Fix myst settings for document compiling (#1381) @ly015
    • Fix a bug in bbox transform (#1384) @ly015
    • Fix inaccurate description of min_keypoints in tracking apis (#1398) @pallgeuer
    • Fix warning with torch.meshgrid (#1402) @pallgeuer
    • Remove redundant transformer modules from mmpose.datasets.backbones.utils (#1405) @ly015
    Source code(tar.gz)
    Source code(zip)
  • v0.26.0(May 5, 2022)

    Highlights

    New Features

    Improvements

    • Speed up inference and reduce CPU usage by optimizing the pre-processing pipeline (#1320) @chenxinfeng4, @liqikai9
    • Video demo supports models that requires multi-frame inputs (#1300) @liqikai9, @jin-s13
    • Update benchmark regression list (#1328) @ly015, @liqikai9
    • Remove unnecessary warnings in TopDownPoseTrack18VideoDataset (#1335) @liqikai9
    • Improve documentation quality (#1313, #1305) @Ben-Louis, @ly015
    • Update deprecating settings in configs (#1317) @ly015

    Bug Fixes

    • Fix a bug in human skeleton grouping that may skip the matching process unexpectedly when ignore_to_much is True (#1341) @daixinghome
    • Fix a GPG key error that leads to CI failure (#1354) @ly015
    • Fix bugs in distributed training script (#1338, #1298) @ly015
    • Fix an upstream bug in xtoccotools that causes incorrect AP(M) results (#1308) @jin-s13, @ly015
    • Fix indentiation errors in the colab tutorial (#1298) @YuanZi1501040205
    • Fix incompatible model weight initialization with other OpenMMLab codebases (#1329) @274869388
    • Fix HRNet FP16 checkpoints download URL (#1309) @YinAoXiong
    • Fix typos in body3d_two_stage_video_demo.py (#1295) @mucozcan

    Breaking Changes

    • Refactor bbox processing in datasets and pipelines (#1311) @ly015, @Ben-Louis The bbox format conversion (xywh to center-scale) and random translation are moved from the dataset to the pipeline. The comparison between new and old version is as below:
    v0.26.0 v0.25.0
    Dataset
    (e.g. TopDownCOCODataset)
    ...
    # Data sample only contains bbox
    rec.append({
        'bbox': obj['clean_bbox][:4],
        ...
    })
    
    ...
    # Convert bbox from xywh to center-scale
    center, scale = self._xywh2cs(*obj['clean_bbox'][:4])
    # Data sample contains center and scale
    rec.append({
        'bbox': obj['clean_bbox][:4],
        'center': center,
        'scale': scale,
        ...
    })
    
    Pipeline Config
    (e.g. HRNet+COCO)
    ...
    train_pipeline = [
        dict(type='LoadImageFromFile'),
        # Convert bbox from xywh to center-scale
        dict(type='TopDownGetBboxCenterScale', padding=1.25),
        # Randomly shift bbox center
        dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
        ...
    ]
    
    ...
    train_pipeline = [
        dict(type='LoadImageFromFile'),
        ...
    ]
    
    Advantage
  • Simpler data sample content
  • Flexible bbox format conversion and augmentation
  • Apply bbox random translation every epoch (instead of only applying once at the annotation loading)
  • -
    BC Breaking The method _xywh2cs of dataset base classes (e.g. Kpt2dSviewRgbImgTopDownDataset) will be deprecated in the future. Custom datasets will need modifications to move the bbox format conversion to pipelines. -
    Source code(tar.gz)
    Source code(zip)
  • v0.25.1(Apr 22, 2022)

  • v0.25.0(Apr 2, 2022)

    Highlights

    New Features

    Improvements

    • Update HRFormer configs and checkpoints with relative position bias (#1245) @zengwang430521
    • Support using different random seed for each distributed node (#1257, #1229) @ly015
    • Improve documentation quality (#1275, #1255, #1258, #1249, #1247, #1240, #1235) @ly015, @jin-s13, @YoniChechik

    Bug Fixes

    • Fix keypoint index in RHD dataset meta information (#1265) @liqikai9
    • Fix pre-commit hook unexpected behavior on Windows (#1282) @liqikai9
    • Remove python-dev installation in CI (#1276) @ly015
    • Unify hyphens in argument names in tools and demos (#1271) @ly015
    • Fix ambiguous channel size in channel_shuffle that may cause exporting failure (#1242) @PINTO0309
    • Fix a bug in Webcam API that causes single-class detectors fail (#1239) @674106399
    • Fix the issue that custom_hook can not be set in configs (#1236) @bladrome
    • Fix incompatible MMCV version in DockerFile (#raykindle)
    • Skip invisible joints in visualization (#1228) @womeier
    Source code(tar.gz)
    Source code(zip)
  • v0.24.0(Mar 7, 2022)

    Highlights

    New Features

    Improvements

    • Refactor multi-view 3D pose estimation framework towards better modularization and expansibility (#1196) @wusize
    • Add WebcamAPI documents and tutorials (#1187) @ly015
    • Refactor dataset evaluation interface to align with other OpenMMLab codebases (#1209) @ly015
    • Add deprecation message for deploy tools since MMDeploy has supported MMPose (#1207) @QwQ2000
    • Improve documentation quality (#1206, #1161) @ly015
    • Switch to OpenMMLab official pre-commit-hook for copyright check (#1214) @ly015

    Bug Fixes

    • Fix hard-coded data collating and scattering in inference (#1175) @ly015
    • Fix model configs on JHMDB dataset (#1188) @jin-s13
    • Fix area calculation in pose tracking inference (#1197) @pallgeuer
    • Fix registry scope conflict of module wrapper (#1204) @ly015
    • Update MMCV installation in CI and documents (#1205)
    • Fix incorrect color channel order in visualization functions (#1212) @ly015
    Source code(tar.gz)
    Source code(zip)
  • v0.23.0(Feb 14, 2022)

    Highlights

    New Features

    • Add MMPose Webcam API: A simple yet powerful tools to develop interactive webcam applications with MMPose functions. (#1178, #1173, #1173, #1143, #1094, #1133, #1098, #1160) @ly015, @jin-s13, @liqikai9, @wusize, @luminxu, @zengwang430521 @mzr1996
    • Support ConcatDataset (#1139) @Canwang-sjtu
    • Support CPU training and testing (#1157) @ly015

    Improvements

    • Add multi-processing configurations to speed up distributed training and testing (#1146) @ly015

    • Add default runtime config (#1145)

    • Upgrade isort in pre-commit hook (#1179) @liqikai9

    • Update README and documents (#1171, #1167, #1153, #1149, #1148, #1147, #1140) @jin-s13, @wusize, @TommyZihao, @ly015

    Bug Fixes

    • Fix undeterministic behavior in pre-commit hooks (#1136) @jin-s13
    • Deprecate the support for "python setup.py test" (#1179) @ly015
    • Fix incompatible settings with MMCV on HSigmoid default parameters (#1132) @ly015
    • Fix albumentation installation (#1184) @BIGWangYuDong
    Source code(tar.gz)
    Source code(zip)
  • v0.22.0(Jan 5, 2022)

    Highlights

    New Features

    Improvements

    Bug Fixes

    • Fix a bug in Dark UDP postprocessing that causes error when the channel number is large. (#1079, #1116) @X00123, @jin-s13
    • Fix hard-coded sigmas in bottom-up image demo (#1107, #1101) @chenxinfeng4, @liqikai9
    • Fix unstable checks in unit tests (#1112) @ly015
    • Do not destroy NULL windows if args.show==False in demo scripts (#1104) @bladrome
    Source code(tar.gz)
    Source code(zip)
  • v0.21.0(Dec 6, 2021)

    Highlights

    New Features

    Improvements

    Bug Fixes

    • Update pose tracking demo to be compatible with latest mmtracking (#1014) @jin-s13
    • Fix symlink creation failure when installed in Windows environments (#1039) @QwQ2000
    • Fix AP-10K dataset sigmas (#1040) @jin-s13
    Source code(tar.gz)
    Source code(zip)
  • v0.20.0(Nov 1, 2021)

    Highlights

    • Add AP-10K dataset for animal pose estimation (#987) @Annbless, @AlexTheBad, @jin-s13, @ly015
    • Support TorchServe (#979) @ly015

    New Features

    • Add AP-10K dataset for animal pose estimation (#987) @Annbless, @AlexTheBad, @jin-s13, @ly015
    • Add HRNetv2 checkpoints on 300W and COFW datasets (#980) @jin-s13
    • Support TorchServe (#979) @ly015

    Bug Fixes

    • Fix some deprecated or risky settings in configs (#963, #976, #992) @jin-s13, @wusize
    • Fix issues of default arguments of training and testing scripts (#970, #985) @liqikai9, @wusize
    • Fix heatmap and tag size mismatch in bottom-up with UDP (#994) @wusize
    • Fix python3.9 installation in CI (#983) @ly015
    • Fix model zoo document integrity issue (#990) @jin-s13

    Improvements

    • Support non-square input shape for bottom-up (#991) @wusize
    • Add image and video resources for demo (#971) @liqikai9
    • Use CUDA docker images to accelerate CI (#973) @ly015
    • Add codespell hook and fix detected typos (#977) @ly015
    Source code(tar.gz)
    Source code(zip)
  • v0.19.0(Oct 8, 2021)

    Highlights

    • Add models for Associative Embedding with Hourglass network backbone (#906, #955) @jin-s13, @luminxu
    • Support COCO-Wholebody-Face and COCO-Wholebody-Hand datasets (#813) @jin-s13, @innerlee, @luminxu
    • Upgrade dataset interface (#901, #924) @jin-s13, @innerlee, @ly015, @liqikai9
    • New style of documentation (#945) @ly015

    New Features

    • Add models for Associative Embedding with Hourglass network backbone (#906, #955) @jin-s13, @luminxu
    • Support COCO-Wholebody-Face and COCO-Wholebody-Hand datasets (#813) @jin-s13, @innerlee, @luminxu
    • Add pseudo-labeling tool to generate COCO style keypoint annotations with given bounding boxes (#928) @soltkreig
    • New style of documentation (#945) @ly015

    Bug Fixes

    • Fix segmentation parsing in Macaque dataset preprocessing (#948) @jin-s13
    • Fix dependencies that may lead to CI failure in downstream projects (#936, #953) @RangiLyu, @ly015
    • Fix keypoint order in Human3.6M dataset (#940) @ttxskk
    • Fix unstable image loading for Interhand2.6M (#913) @zengwang430521

    Improvements

    • Upgrade dataset interface (#901, #924) @jin-s13, @innerlee, @ly015, @liqikai9
    • Improve demo usability and stability (#908, #934) @ly015
    • Standardize model metafile format (#941) @ly015
    • Support persistent_worker and several other arguments in configs (#946) @jin-s13
    • Use MMCV root model registry to enable cross-project module building (#935) @RangiLyu
    • Improve the document quality (#916, #909, #942, #913, #956) @jin-s13, @ly015, @bit-scientist, @zengwang430521
    • Improve pull request template (#952, #954) @ly015

    Breaking Changes

    • Upgrade dataset interface (#901) @jin-s13, @innerlee, @ly015
    Source code(tar.gz)
    Source code(zip)
  • v0.18.0(Sep 2, 2021)

    Improvements

    • Add automatic benchmark regression tools (#849, #880, #885) @liqikai9, @ly015
    • Add copyright information and checking hook (#872)
    • Add PR template (#875) @ly015
    • Add citation information (#876) @ly015
    • Add python3.9 in CI (#877, #883) @ly015
    • Improve the quality of the documents (#845, #845, #848, #867, #870, #873, #896) @jin-s13, @ly015, @zhiqwang

    Bug Fixes

    • Fix redundant model weight loading in pytorch-to-onnx conversion (#850) @ly015
    • Fix a bug in update_model_index.py that may cause pre-commit hook failure(#866) @ly015
    • Fix a bug in interhand_3d_head (#890) @zengwang430521
    • Fix pose tracking demo failure caused by out-of-date configs (#891)
    Source code(tar.gz)
    Source code(zip)
  • v0.17.0(Aug 6, 2021)

    Highlights

    1. Support "Lite-HRNet: A Lightweight High-Resolution Network" CVPR'2021 (#733,#800) @jin-s13
    2. Add 3d body mesh demo (#771) @zengwang430521
    3. Add Chinese documentation (#787, #798, #799, #802, #804, #805, #815, #816, #817, #819, #839) @ly015, @luminxu, @jin-s13, @liqikai9, @zengwang430521
    4. Add Colab Tutorial (#834) @ly015

    New Features

    Bug Fixes

    • Fix mpii [email protected] index (#773) @jin-s13
    • Fix multi-node distributed test (#818) @ly015
    • Fix docstring and init_weights error of ShuffleNetV1 (#814) @Junjun2016
    • Fix imshow_bbox error when input bboxes is empty (#796) @ly015
    • Fix model zoo doc generation (#778) @ly015
    • Fix typo (#767), (#780, #782) @ly015, @jin-s13

    Breaking Changes

    • Use MMCV EvalHook (#686) @ly015

    Improvements

    • Add pytest.ini and fix docstring (#812) @jin-s13
    • Support None as target weights in losses (#829) @Ezra-Yu
    • Move process_mmdet_results into inference.py (#831) @ly015
    • Update resource limit (#783) @jin-s13
    • Use COCO 2D pose model in 3D demo examples (#785) @ly015
    • Change model zoo titles in the doc from center-aligned to left-aligned (#792, #797) @ly015
    • Support MIM (#706, #794) @ly015
    • Update out-of-date configs (#827) @jin-s13
    • Remove opencv-python-headless dependency by albumentations (#833) @ly015
    • Update QQ QR code in README_CN.md (#832) @ly015
    Source code(tar.gz)
    Source code(zip)
  • v0.16.0(Jul 3, 2021)

    Demo Video

    Highlights

    1. Support "ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search" CVPR'2021 (#742,#755).
    2. Support MPI-INF-3DHP dataset (#683,#746,#751).
    3. Add webcam demo tool (#729)
    4. Add 3d body and hand pose estimation demo (#704, #727).

    New Features

    Bug Fixes

    Breaking Changes

    • Switch to MMCV MODEL_REGISTRY (#669)

    Improvements

    • Refactor MeshMixDataset (#752)
    • Rename 'GaussianHeatMap' to 'GaussianHeatmap' (#745)
    • Update out-of-date configs (#734)
    • Improve compatibility for breaking changes (#731)
    • Enable to control radius and thickness in visualization (#722)
    • Add regex dependency (#720)
    Source code(tar.gz)
    Source code(zip)
  • 0.15.0(Jun 3, 2021)

    Highlights

    1. Support 3d video pose estimation (VideoPose3D).
    2. Support 3d hand pose estimation (InterNet).
    3. Improve presentation of the model zoo.

    New Features

    • Support "InterHand2.6M: A Dataset and Baseline for 3D Interacting Hand Pose Estimation from a Single RGB Image" (ECCV‘20) (#624)
    • Support "3D human pose estimation in video with temporal convolutions and semi-supervised training" (CVPR'19) (#602,#681)
    • Support 3d pose estimation demo (#653,#670)
    • Support bottom-up whole-body pose estimation (#689)
    • Support mmcli (#634)

    Bug Fixes

    Breaking Changes

    • Reorganize configs by tasks, algorithms, datasets, and techniques (#647)
    • Rename heads and detectors (#667)

    Improvements

    • Add radius and thickness parameters in visualization (#638)
    • Add trans_prob parameter in TopDownRandomTranslation (#650)
    • Switch to MMCV MODEL_REGISTRY (#669)
    • Update dependencies (#674,#676)
    Source code(tar.gz)
    Source code(zip)
  • v0.14.0(May 7, 2021)

    Highlights

    1. Support animal pose estimation with 7 popular datasets.
    2. Support "A simple yet effective baseline for 3d human pose estimation" (ICCV'17).

    New Features

    • Support "A simple yet effective baseline for 3d human pose estimation" (ICCV'17) (#554,#558,#566,#570,#589)
    • Support animal pose estimation (#559,#561,#563,#571,#603,#605)
    • Support Horse-10 dataset (#561), MacaquePose dataset (#561), Vinegar Fly dataset (#561), Desert Locust dataset (#561), Grevy's Zebra dataset (#561), ATRW dataset (#571), and Animal-Pose dataset (#603).
    • Support bottom-up pose tracking demo (#574).
    • Support FP16 training (#584,#616,#626).
    • Support NMS for bottom-up (#609).

    Bug Fixes

    • Fix bugs in the top-down demo, when there are no people in the images (#569).
    • Fix the links in the doc (#612).

    Improvements

    Source code(tar.gz)
    Source code(zip)
  • v0.13.0(Apr 1, 2021)

    Highlights

    1. Support Wingloss.
    2. Support RHD hand dataset.

    New Features

    • Support Wingloss (#482)
    • Support RHD hand dataset (#523, #551)
    • Support Human3.6m dataset for 3d keypoint detection (#518, #527)
    • Support TCN model for 3d keypoint detection (#521, #522)
    • Support Interhand3D model for 3d hand detection (#536)
    • Support Multi-task detector (#480)

    Bug Fixes

    Improvements

    Source code(tar.gz)
    Source code(zip)
  • v0.12.0(Mar 1, 2021)

    Highlights

    1. Support DeepPose algorithm.

    New Features

    • Support DeepPose algorithm (#446, #461)
    • Support interhand3d dataset (#468)
    • Support Albumentation pipeline (#469)
    • Support PhotometricDistortion pipeline (#485)
    • Set seed option for training (#493)
    • Add demos for face keypoint detection (#502)

    Bug Fixes

    • Change channel order according to configs (#504)
    • Fix num_factors in UDP encoding (#495)
    • Fix configs (#456)

    Breaking Changes

    • Refactor configs for wholebody pose estimation (#487, #491)
    • Rename decode function for heads (#481)

    Improvements

    Source code(tar.gz)
    Source code(zip)
  • v0.11.0(Feb 1, 2021)

    Highlights

    1. Support fashion landmark detection.
    2. Support face keypoint detection.
    3. Support pose tracking with MMTracking.

    New Features

    • Support fashion landmark detection (DeepFashion) (#413)
    • Support face keypoint detection (300W, AFLW, COFW, WFLW) (#367)
    • Support pose tracking demo with MMTracking (#427)
    • Support face demo (#443)
    • Support AIC dataset for bottom-up methods (#438, #449)

    Bug Fixes

    • Fix multi-batch training (#434)
    • Fix sigmas in AIC dataset (#441)
    • Fix config file (#420)

    Breaking Changes

    • Refactor Heads (#382)

    Improvements

    Source code(tar.gz)
    Source code(zip)
  • v0.10.0(Jan 5, 2021)

    Highlights

    1. Support more human pose estimation methods.
    2. Support pose tracking.
    3. Support multi-batch inference.
    4. Add some useful tools, including analyze_logs, get_flops, print_config.
    5. Support more backbone networks.

    New Features

    • Support UDP (#353, #371, #402)
    • Support multi-batch inference (#390)
    • Support MHP dataset (#386)
    • Support pose tracking demo (#380)
    • Support MPII-TRB demo (#372)
    • Support MobileNet for hand pose estimation (#377)
    • Support ResNest backbone (#370)
    • Support VGG backbone (#370)
    • Add some useful tools, including analyze_logs, get_flops, print_config (#324)

    Bug Fixes

    • Fix bugs in pck evaluation (#328)
    • Fix model download links in README (#396, #397)
    • Fix CrowdPose annotations and update benchmarks (#384)
    • Fix modelzoo stat (#354, #360, #362)
    • Fix config files for AIC datasets (#340)

    Breaking Changes

    • Rename image_thr to det_bbox_thr for top-down methods.

    Improvements

    • Organize the readme files (#398, #399, #400)
    • Check linting for markdown (#379)
    • Add faq.md (#350)
    • Remove PyTorch 1.4 in CI (#338)
    • Add pypi badge in readme (#329)
    Source code(tar.gz)
    Source code(zip)
  • v0.9.0(Nov 30, 2020)

    Highlights

    1. Support more human pose estimation methods.
    2. Support video pose estimation datasets.
    3. Support Onnx model conversion.

    New Features

    • Support MSPN (#278)
    • Support RSN (#221, #318)
    • Support new post-processing method for MSPN & RSN (#288)
    • Support sub-JHMDB dataset (#292)
    • Support urls for pre-trained models in config files (#232)
    • Support Onnx (#305)

    Bug Fixes

    • Fix model download links in README (#255, #315)

    Breaking Changes

    • post_process=True|False and unbiased_decoding=True|False are deprecated, use post_process=None|default|unbiased etc. instead (#288)

    Improvements

    Source code(tar.gz)
    Source code(zip)
  • v0.8.0(Oct 31, 2020)

    Highlights

    1. Support more human pose estimation datasets.
    2. Support more 2D hand keypoint estimation datasets.
    3. Support adversarial training for 3D human shape recovery.
    4. Support multi-stage losses.
    5. Support mpii demo.

    New Features

    Bug Fixes

    • Fix config files (#190)

    Improvements

    • Add mpii demo (#216)
    • Improve README (#181, #183, #208)
    • Support return heatmaps and backbone features (#196, #212)
    • Support different return formats of mmdetection models (#217)
    Source code(tar.gz)
    Source code(zip)
  • v0.7.0(Oct 5, 2020)

    Highlights

    1. Support HMR for 3D human shape recovery.
    2. Support WholeBody human pose estimation.
    3. Support more 2D hand keypoint estimation datasets.
    4. Add more popular backbones & enrich the modelzoo.
      • ShuffleNetv2
    5. Support hand demo and whole-body demo.

    New Features

    Bug Fixes

    • Fix typos in docs (#121)
    • Fix assertion (#142)

    Improvements

    • Add tools to transform .mat format to .json format (#126)
    • Add hand demo (#115)
    • Add whole-body demo (#163)
    • Reuse mmcv utility function and update version files (#135, #137)
    • Enrich the modelzoo (#147, #169)
    • Improve docs (#174, #175, #178)
    • Improve README (#176)
    • Improve version.py (#173)
    Source code(tar.gz)
    Source code(zip)
  • v0.6.0(Sep 2, 2020)

    Highlights

    1. Add popular backbones & enrich the modelzoo.

      • ResNext
      • SEResNet
      • ResNetV1D
      • MobileNetv2
      • ShuffleNetv1
      • CPM (Convolutional Pose Machine)
    2. Add popular datasets:

    3. Support 2d hand keypoint estimation.

    4. Support bottom-up inference.

    New Features

    Bug Fixes

    • Fix configs for MPII & MPII-TRB datasets (#93).
    • Fix the bug of missing test_pipeline in configs (#14).
    • Fix typos (#27, #28, #50, #53, #63).

    Improvements

    • Update benchmark (#93).
    • Add Dockerfile (#44).
    • Improve unittest coverage and minor fix (#18).
    • Support CPUs for train/val/demo (#34).
    • Support bottom-up demo (#69).
    • Add tools to publish model (#62).
    • Enrich the modelzoo (#64, #68, #82).
    Source code(tar.gz)
    Source code(zip)
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022